
Cosmic Ray Data Acquisition
Project

Jun ha Kim

Mentor: Professor Raul Armendariz

Queensborough Community College

Department: Physics

Arduino Mega and Breadboard Setup (Square
Pulse Plot)

• Arduino Mega is connected to a solderless
breadboard like so:
• Arduino GND to negative (breadboard)

power rail
• Arduino Pin 11 to A10
• Arduino Pin 2 to B10
• Resistor connects E10 to F10 so that the

voltage on Pin 2 does not float
• J 10 to negative power rail

• Objective is to capture an electrical signal—
Pulse Per Second (PPS) — that repeats once
per second using the Ardunio Board

Code used to collect Pulse Point Data
• Timer1.initialize() and

Timer1.pwm() are used to
generate a square pulse from pin
11 (Arduino board)

• Pulse has a 1 second period and
0.1 second width

• Loop() function ensures that:
• If the input is high, the program

prints a high number

• If the input is low, the program
prints a low number

Square Pulse Plot Results
• Signal goes high (1) at:

42.516 (SS:MS)

• Signal goes low (0) at:
42.611

• Signal goes high again
at: 43.492

• Signal width: high –
low = 42.611 – 42.516
= 95ms

• Signal period: ℎ𝑖𝑔ℎ2 −
ℎ𝑖𝑔ℎ1 = 43.492 –
42.516 = 976ms

0

0.2

0.4

0.6

0.8

1

1.2

41 42 43 44 45 46 47 48

Si
gn

al
 s

ta
te

 (
0

 =
 G

N
D

, 1
 =

 5
V

)

Time (seconds)

Square pulse created with Arduino Mega Timer1

Signal width: 95ms, about 10% of the signal period

Signal period: 976ms

Arduino Mega and Breadboard Setup (NMEA
data)

• Arduino Mega is connected to GPS
receiver (placed on breadboard) like
so:
• Arduino 5V to VIN
• Arduino GND to GPS GND
• Arduino RX0 to GPS RX
• Arduino TX0 to GPS TX

• National Marine Electronic Association
(NMEA) data collected

Code used to collect NMEA Data

• Default baud rate
(rate at which bits
are transmitted) or
9600 bauds
selected

GPS receiver NMEA data (sample)

• 11:17:39.939 -> $GPGGA,151739.000,4045.3472,N,07345.5606,W,2,09,0.90,207.5,M,-
34.3,M,0000,0000*5B

• 11:17:40.033 -> $GPGSA,A,3,04,21,27,16,30,14,07,08,09,,,,1.67,0.90,1.40*0B

• 11:17:40.080 -> $GPGSV,3,1,11,08,83,088,28,07,59,307,46,27,46,049,28,30,32,310,49*72

• 11:17:40.174 -> $GPGSV,3,2,11,51,31,225,47,21,30,143,24,09,30,225,49,16,22,074,27*7B

• 11:17:40.220 -> $GPGSV,3,3,11,04,14,193,40,14,07,273,47,01,07,168,*49

• 11:17:40.314 -> $GPRMC,151739.000,A,4045.3472,N,07345.5606,W,0.01,211.12,150422,,,D*76

• 11:17:40.361 -> $GPVTG,211.12,T,,M,0.01,N,0.02,K,D*3A

• The data was collected in an indoor setting, resulting in faulty information initially

• To fix this issue, the GPS module was connected to a satellite receiver using interlinked coax
cables

• The satellite was placed outdoors, pointing towards the sky

Understanding NMEA (National Marine
Electronics Association) sentences
• All sentences begin with a "$" symbol

• Limited to 80 characters (including a "newline” character)

• Commas delineate distinct subjects (latitude, time, etc.)

• Sentences provide information regarding location, satellites the GPS
successfully interface with, altitude above mean sea level, etc.

• Difference sentences may repeat identical info, but will also supply
new, relevant information

Understanding NMEA sentences (Continued)

• $GPGGA,151739.000,4045.3472,N,07345.5606,W,2,09,0.90,207.5,M,-
34.3,M,0000,0000*5B
• GGA: indicates the data type and describes how the sentence should be

interpreted
• 151739: Time (UTC)
• 4045.3472,N: Latitude 40 deg 45.3472’ N
• 07345.5606,W: Longitude 73 deg 45.5606’ W
• 2: Denotes fix quality
• 09: Number of satellites being tracked
• 0.9: Horizontal dilution of position
• 207.5,M: Altitude above mean sea level (meters)
• 34.3,M: Height of geoid (mean sea level) above WGS84 ellipsoid (meters)
• *5B: Checksum data

Arduino Mega and Breadboard Setup (GPS
Receiver PPS [Pulse Per Second] Square Pulse)

• Arduino Mega is connected to GPS
receiver (placed on breadboard) like
so:
• Arduino 5V to GPS Vin
• Arduino GND to GPS GND
• Arduino PWM 2 to GPS PPS

• This setup ensures that data
transmitted to the GPS is relayed to
the Arduino Mega

• Objective is to capture an electrical
signal that repeats once per second
using the GPS module

Code used to record the GPS Receiver PPS
Square Pulse

• Loop() function ensures that:
• If digitalRead(2), or the value from

pin 2, is a high value, the program
prints “HIGH”

• In contrast, if digitalRead(2) reads a
low value, the program prints
“LOW”

• Continuous

PPS Signal Error

• Serial monitor data was
collected for approx. 25
data points

• Data points were
calculated using the
following formula: 1 –
[(pulse 2 start time) –
(pulse 1 start time)]

• GPS PPS signal emits a
consistent 33 to 35
millisecond error

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Er
ro

r
in

 m
ill

is
ec

o
n

d
s

PPP Pulses 25 seconds

Excel Plot of GPS PPS Signal

References

• https://airu.coe.utah.edu/wp-
content/uploads/sites/62/2017/09/adafruit-ultimate-gps.pdf

• https://www.tramsoft.ch/downloads/garmin/NMEA%20data.htm

https://airu.coe.utah.edu/wp-content/uploads/sites/62/2017/09/adafruit-ultimate-gps.pdf
https://www.tramsoft.ch/downloads/garmin/NMEA data.htm

