
Enabling data collection for cosmic ray detector
Junjie Chen(city college of New York, New York, NY 10031)

Mentor: David Jaffe (Brookhaven National Laboratory, Upton, NY 11973)
Collaborators: Raul Armendariz(Queensborough Community College, Bayside, NY 11364)

Aiwu Zhang(Brookhaven National Laboratory, Upton, NY 11973)

Abstract:
A cosmic ray shower occurs when a cosmic ray interacts in the
upper atmosphere. Many of the muons from the resulting shower
penetrate the atmosphere and strike the earth’s surface. Our
detector is designed to create pulse when muons pass through the
detector. Our Arduino board will receive a signal trigger when there
is a muon coming in. All the data including the peak voltage,
GPS(Global Positioning System), temperature and pressure is
collected for the trigger. However, the GPS time is not accurate
enough since it takes time to decode the signal (NMEA sentence)
from GPS. So, PPS(Pulse Per Second) which indicates the start of an
integer second is used to correct the error with an inner clock of
Arduino. We also write two programs to automatically receive and
save the data as texts file on the Raspberry pi 3 and automatically
upload those files into our storage space.

Time stamping :
1, Instruments :
 Arduino mega2560, Adafruit GPS receiver(PA6H1F1752).

2, Method:
In the time stamping process, we trust the PPS signal from GPS
receiver, which means the PPS signal is the start of new second.

The decimal place of the time is calculated by a 16MHz internal
clock of Arduino (Timer 1), which means we can only make the
accuracy at most 62ns.

𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑 +
𝑐𝑜𝑢𝑛𝑡𝑠

𝑓

The Timer 1 counter in Arduino mega2560 is a 16bit counter that
counts the Arduino clock, which means it will overflow every 4ms.
To use it to measure the decimal place of the time, we have to
record the times of overflow. So, an ISR interrupt should be called:

𝑻𝑰𝑴𝑺𝑲𝟏 = _𝑩𝑽(𝑻𝑶𝑰𝑬𝟏);//𝒆𝒏𝒂𝒃𝒍𝒆 𝒕𝒉𝒆 𝑰𝑺𝑹

and

𝐼𝑆𝑅(𝑇𝐼𝑀𝐸𝑅1_𝑂𝑉𝐹_𝑣𝑒𝑐𝑡) {
 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑠 + +;}

(Those code is direct use of the physical address of TIMER1)

3, Discussion

However the Arduino frequency is just around 16 MHz . If we use
the inaccurate frequency, this is the result when we measuring the
leading edge of 100 Hz pulse:

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 1000 2000 3000 4000

p
e

ri
o

d
 (

1
0

 m
s)

triggers

trigger period with time stamping(unfixed)
f=16MHz

You can see each second, there is a drop on the period, which
means the time stamping is fixed by the PPS signal. So, we have to
measure the counts between two PPS signal which is the
frequency.

This is caused by :(count is the Arduino count since last PPS)

∆𝑡 = 𝑠𝑒𝑐2 +
𝑐𝑜𝑢𝑛𝑡2

𝑓 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑
− 𝑠𝑒𝑐1 +

𝑐𝑜𝑢𝑛𝑡1

𝑓 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑

= 1 +
𝑐𝑜𝑢𝑛𝑡2 + 𝑓 𝑟𝑒𝑎𝑙 − 𝑐𝑜𝑢𝑛𝑡1

𝑓 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑
−

𝑓 𝑟𝑒𝑎𝑙

𝑓 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑

∆ ∆𝑡 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 = 1 −
𝑓 𝑟𝑒𝑎𝑙

𝑓 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑

Then the period of 100Hz pulse is stable like the next two plot:

0.999

0.9995

1

1.0005

1.001

0 500 1000 1500 2000 2500 3000 3500

∆
t

b
et

w
ee

n
 2

 t
ri

gg
er

s
(1

0
m

s)

trigger

f = 16.003312MHz

-0.000001

0

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

1 3 5 7 9 1113151719212325272931333537

se
co

n
d

events

time difference

time difference

4,Conclusion:
We understand time stamping of GPS for Arduino and we have the program to do
the time stamping.

Most of the time difference on two Arduino board for the same pulse are within
500ns except two points.

So, the minimum gate for date analysis will be 500ns. (If the time difference are
within 500ns, then we thought they are from a same shower)

Auto-uploading stage :
Tool: processing 3.0

We want to upload on Raspberry Pi for financial reason (we plan to
build 30 detectors). So, we want to use raspberry pi to upload data to
Dropbox.

However, there is no raspbian version Dropbox product. So, we write a
program (cron_drop) to upload.

Meanwhile, since on the raspbian, we cant upload a file when that file is
written in data. So, auto-copy should be done on the commend line.

Then, on one computer, we will use the commend line to auto-rename
the data file due to the time and date.

This is part of the data collection code to write the data in text file on
processing 3.0:

 void serialEvent (Serial myPort) {
 // get the ASCII string:
 String inString = myPort.readStringUntil('\n');
 if (inString != null) {
 inString = trim(inString);
 output.println(inString);
 output.flush();
 }
 }

Date analysis program:
Tool: C language
After we collect all the data, we write a program to find the cosmic ray
shower from those date.

There is a gate which is calculated by

𝑔𝑎𝑡𝑒 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑠

𝑐

So. If the distance is 30 km, then the gate will be 100us.

If most of the detectors receive a signal within the gate, then, it’s a
shower.

We will compare the date line by line so, we should use this function:

void getaline(FILE*r,int n) we defined in our code where *r is the pointer
of the file and n is marking which file we are reading.

The complexity of the code will be N, since it only goes over each date
file once.

Future work:
We need to figure out the reason for the error on time stamping(500ns).
Measure the time consumed on each step of the Arduino program.

Reconstruction of the shower:
After we collect the location, time and energy information.

two methods:
1, Use the time and location of arrival on detectors and the uncertainty
of the time stamping to make several inequations to find a possible
range of original oscillation point.

2, Use the energy distribution to find the mid point and the angle of the
cosmic shower.

It’s not good as what our expected like 62ns.

 Here is the 3 possible reasons:

1, One of the PPS signal is not accurate because we see that one GPS receives 9
satellite signals but the other one only receives 6.
Since GPS receiver is solving inequation while correcting the time. So, more
satellites , the more accurate time we will have. In order to reach the level of ns,
we suggest to ensure all the GPS receiver receives around 8 satellites.

2, The Arduino stability for counts.

3, Time consumed on Arduino code.

In order to record the signal as soon as the signal coming in, the PPS and events
signal should also call interrupts. When PPS comes in, record the counts(for
calculate the frequency) and reset it to 0. Since it takes time, we should measure
that and add to the counts for events.

void ppS(){
 temp = TCNT1;

 overflows2=overflows;
TCNT1=0;

 overflows = 0;}

(TCBT1 is the physical address of our Timer 1 counter)
Then when the events comes, just record the counts.

void Trigger(){

 temp = TCNT1;
o=overflows;}

TCNT1 is the physical address for the Timer 1 counts.
To measure the accuracy of the time stamping, we do the next thing:
We use two Arduino boards to measure the same pulse from the generator, this is
the results(cable length are almost same):

This is a Cosmic ray shower
(https://en.wikipedia.org/wiki/Air_shower_(physics))

