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Particle Detectors

Elementary particles are detected via their interactions with matter. There are 4 different
iInteractions in use:

 Charged particles ionize matter and leave electron-ion pairs in their wake
> accounts for nearly all particle detection technologies

> neutral particles are observed only because they produce charged secondaries

 Charged particles traveling faster than the speed of light in a transparent medium
emit Cerenkov Radiation

 Charged particles traversing the interface between regions of different dielectric
constant emit photons in the opposite direction [Transition Radiation]

> physics is related to Cerenkov Radiation

e Charged/neutral particles can interact with nuclei to produce phonons [quantized
lattice vibrations] in crystals



We usually deal with relativistic particles and need to remember some more general

Useful Definitions

definitions of energy and momentum
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e we often measure velocity in units of v/c

e the y factor varies from 1 [slow particles] to large values [very relativistic particles]

> E and p scale with y and become large as 3 -> 1

B

* Kkinetic energy T is the difference between the total energy E and the rest mass energy mc?
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More Useful Definitions

Interactions between particles [elementary ones, or atoms/molecules] can be characterized
by an effective area known as a cross section o

Nbeam ptgt
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Assume that we have a beam of Nyweam particles of cross sectional area A and length L
moving at a speed v. It impinges on a medium have a number density pigt. The number of
interactions per second the we expect would be dN/dt,

dN Nbeam U
— - 0 ptgtAL — Nbeamvo-ptgt

dt A L
tht

If the interactions remove beam particles, then we should include a - sign.

dNbeam
dt

— _Nbeamvaptgt —7 dNbeam — _Nbeamo-ptgtvdt
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As a function of distance traveled dz = vdt, we see that

1
—0ptotd2 —  Npeam = Noe_z/g, { =
Npeam et O Ptgt

The beam is exponentially attenuated with a mean free path of 1/(po). This physics can be
found in many systems. [Note that all densities are number densities not mass densities.]

This physics even appears in chemical reactions! Let’s consider two chemical species A

and B that interact to produce C: A+B->C. Let’s assume that A and B are moving thermally
and have a cross section o to produce species C.

s NAVelOpB = paAV UreiO0pB — °

* Vel IS the relative thermal velocity of the species [scales as T1/2]

— = k(1
itV dt \(/)MPB

UrelO

* the reaction constant k includes the cross section which may have a vrel dependence
[barriers] making the T dependence more complex.
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lonization .

Charged particles interact with electrons bound to atoms and molecules

lonizing the atom/molecule and transferring kinetic energy to the electron.
The ejected electrons can have kinetic energies from a few eV to MeV. ’ @
e Range vs Delta Energy °
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* secondary electrons have Te from few eV to MeV [travel up to ~1mm] emitted mostly at
90° wrt the primary

e secondary electrons ionize material to make more e-ion pairs [significant enhancement]
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The mean energy lost by a charged particle as it traverses some material is given by the
famous Bethe-Bloch equation,

dFE
dx

— K2°

Z 1

A B2

e K=0.307 MeV g-lcm?2 [multiply by pm to get MeV/cm]

 the minimum energy loss occurs when By ~ 3-5

> [dE/dX]min typically varies from 1-2 in MeV g-'cmZ2 units

e the average excitation potential Io ~ (10-15eV) x Z

* energy per e-ion pair W ~ 3.6 eV [Si] - 30 eV [gases]

> determines the average number of electron-ion pairs

 normal incidence min | particle: in 300um thick Si yields
~22,000 e-ion pairs, in 1 cm of Ar gas ~100 e-ion pairs
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The increasing dE/dx for slow particles implies that stopping particles deposit significant
jonization/energy in a small distance. This makes protons and ions useful for cancer

therapy.

The increasing dE/dx for fast particles is caused by the
relativstic increase in the transverse E-field of primary

y=1 y>>1
o known as the “relativistic rise”

* Increase is limited by the “density effect”

> polarization of the material
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Question 1

A relativistic charged particle passes through 300 um of silicon. Approximately how much
charge does it deposit in the material?

T

Si 300 pm
'

charged particle
A. 100e

B. 22,000e

C. Oe



Question 1

A relativistic charged particle passes through 300 um of silicon. Approximately how much
charge does it deposit in the material?

T

300 um

i

charged particle

Sl

A. 100e
The relativistic charged particle makes about 22,000 electron ion pairs
B. 22,000e but deposits 0 net charge in the material. To detect the particle, we can:
1) separate and collect the charges
C. Oe or

2) use the ionized/excited states to create an optical signal
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Question 2

We want to separate and collect the electrons and ions, what kind of material will NOT
work"?

—
=
PRl il

A. conductor
B. insulator

C. semiconductor
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Question 2

We want to separate and collect the electrons and ions, what kind of material will NOT
work"?

e
S

. We need an internal electric field to drift the e- and positively
B. Insulator

charged ions in opposite directions. Conductors cannot support

| internal E-fields.
C. semiconductor
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Metals, Semiconductors, Insulators

The quantum states of the atoms in crystalline solids form bands: the energies become
essentially continuous,

e electrons In the valence band are localized
near their parent atoms

overlap

e electrons in the conduction band can move
“freely” through the crystal

Electron energy

] Bandgap
* the bands overlap in metals [free electrons]

- ™

metal semiconductor iInsulator

e the bands are widely separated by a gap In
iInsulators

> no or very few conduction electrons

* |In semiconductors, the gap is smaller and some electrons can thermally “jump” into the
conduction band leaving holes behind

> holes can move Iin the valence band just like electrons in the conduction band
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Detector Materials

There are not many insulating materials that permit free electrons or ions to move over
macroscopic distances:

all noble gases and some others like methane CH4 and ethane CzHe
cryogenic noble liquids
> low temperatures complicate the detectors but “freeze out” impurities that eat electrons
some room temperature liquids like TMP CoH20 and TMS (CH3)4Si
> Impurities don’t “freeze out”
semiconductors like Si or diamond [C]
> even high resistivity Si conducts too well and needs specialized design
> the fabrication of Si devices is a huge, well-developed, and sophisticated industry

* very small features lead to very precise localization of charge deposits
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Charge Collection in High Resistivity Materials

Consider the charge induced by an electron-ion pair in a parallel plate capacitor just after
deposition [they are close together] and later if they separate

e —n
= o 2 t
——

* at zero separation, the induced charges cancel [no signal can be observed]

* if they move apart, then the net induced charge is Qing = g(z1 - z2)/t
> depends upon the separation of the charges
e |f they move to the electrodes, they neutralize the charge that has flowed onto the plate

> “collecting” charge is a uniform process ... the signal does not change discontinuously
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We discussed charge collection by reverse biased silicon diodes two years ago, there are
other alternatives such as diamond or liquid argon

Amplifier
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* Reversed biased diodes can have a large “depleted” thicknessﬁthat supports an E-field

> otherwise too conductive to support E-field and too much current to see the ionization signal
e Chemical Vapor Deposition (CVD) diamond has a large band gap and high resistivity

» can work as a simple ionization detector: bias it with simple electrodes, no diode needed

> high radiation tolerance

» 2.4 times less signal than silicon [large 5.2 eV bandgap requires more energy/e-ion pair]

> expensive, large capacitance problematic for electronics



GGas Detectors

In gas detectors, we typically have 20-100 e-ion pairs produced by the passage of a
minimum Ionizing particle

Ei ionization energy, Wi average energy per e-ion pair, np average number of primary e-ion
pairs per cm, nt average number of e-ion pairs per cm

Extra energy per e-ion pair is due to non-zero T of the electrons and some energy that
excites but does not ionize the material
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Drift Tube

The cylindrical drift tube is a common geometry used to track particles. The electric field
near the surface of central wire [typical radius ~ 10pm] is quite large [~few x 100kV/cm].

E| = L éIK)—

- In(b/a) r

W™

 The number of e-ion pairs is not large enough even with a sensitive amplifier
> the large E-field near the wire produces an avalanche and gas amplification
> the e scatter off of atoms/molecules with a mean free path

> In high E-fields, the energy gain over the mean free path can increase the energy enough
that it ionizes another atom/molecule

> the 2 electrons gain energy and ionize more molecules



The avalanche increases the signal by factors of typically 104-105°
i 1

A

 Noble gases work well for this with one small caveat

» de-exciting ions can emit UV photons which travel far away from the wire and ionize
more gas molecules: the process can run-away

> add gases that have large UV absorption cross sections to prevent the photons from
traveling far [known as “quencher” gases]

> use hydrocarbons for this purpose [like CoHeg]
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éIK)—

™

e 1D position resolution from drift time: 50-100 pm is typical
* (Gas drift detectors are cheap and can cover large areas [used a lot in muon systems at LHC]
e (5as drift detectors are not very radiation tolerant

> jonized molecules can bond chemically and form polymers

> polymers can deposit on the electrode surfaces

> use other gas additives to suppress polymerization
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(Gas detectors can also operate in higher gain but lower rate modes.
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Scintillation Detectors

Scintillators convert dE/dx into photons that are then detected by photosensors

Thin window Mu Metal Shield lron Protective Shield
fr:“* IISISISSIII IS/ TILIIIIIIIIISISIIIIISS SIS SIS SIS SIS SIS SIS/ S : B e P s
Light :§ '- z
oy , Photomultiplier ; PMT Base
] | | [or other photosensor] : [voltage divider network etc.] |
1 | | I
lL - - E e |
ML L e L e Ll L Ll Ll L Ll L Ll b bl b L Ll L Ll s w1_ )
Scintillator
. OQutput
s n. Signal
- :
Scintillator Types: A
Photosensors Organic Scintillators (
o Inorganic Crystals ’
Photomultipliers
. Gases
Micro-Channel Plates

ybrid Photo Diodes

Visible Light Photon Counter

Silicon Photomultipliers 0 O 10 Time [ns]
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Materials:

Sodium 1od
Cesium iodi
Barium fluoride (

Mechanism:

ide (Nal)
de (Csl)

BaF2)

Energy deposition by ionization
Energy transter to iImpurities
Radiation of scintillation photons

Dopant shifts wavelength to avoid re-absorption

Time constants:

Fast: recor

Slow: reco

nbinati
mbina

on

from activatior

lon due to trappir

scintillation
[luminescence]

Inorganic Scintillators

conduction band

exciton — IS N .
band . . T A
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[activation centers]
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valence band

—nergy bands In
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showing excitation, luminescence,
guenching and trapping
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The spectrum of the emitted photons should always match the sensitivity of the photosensor

S
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PMT spectral sensitivity (Rel. units)
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Inorganic Scintillators

Noble gases and liquids work because they involve de-exciting molecules (shifts A)

. Decay time constants:
Materials: y

| Helium : 11 =.02 ps, T2 =3 ps
elium (He) Argon T < .02 ps
_iquid Argon (LAr)
iquid Xenon (LXe)
De-excitation and
—vcited dissociation

mMmolecules =T
—xcitation \ o
@ Collision N @ ,

\ [with other gas atoms]
lonization v,

lonized /
molecules /" Recombination

o




iNtillator
aterial

Inorganic Scintillators

Density

g/cm?]

Refractive
Index

Wavelength [nm]
for max. emission

Decay time
constant [us]

Photons/MeV

*at 170 nm



Organic Scintillators

Based on molecules with benzene rings and multiple C=C
double bonds (delocalized pi orbitals):

* Delocalized e have an interesting spectroscopy: electron
pairs in spin 0 [S] and spin 1[T] states

e Charged particles excite the So -> S4, So transitions: 3-4 eV

e EXxcited states de-excite/mix with neighboring states

e TJransitions back to the ground state yield lower E photons

>

material is transparent to produced light
fast S->S transitions [fluorescence], few ns decay times

slow S->T->S transtions [phophorescence] ms or longer
decay times

UV photons produced [~320 nm]: poor match to

photosensor response .
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Organic Scintillators

Organic scintillators are typically dissolved in plastic or a liquid solvent. They use wavelength
shifters to match the emitted UV light to the sensitive wavelengths of the photosensors

A

Primary fluorescent B

—nergy deposit in base - Good light yield ...
material > excitation - Absorption spectrum
matched to excited
states in base ﬁecondan; C
naterial uorescen
Solvent Wave length
R — shifter
Primary Fluor
- Secondary

—Xxcltations

Soa



Organic Scintillators
Some widely used solvents and solutes

solvent secondary tertiary
fluor fluor
Liquid Benzene p-terphenyl POPOP
scintillators | Toluene DPO BBO
Xylene PBD BPO
Plastic Polyvinylbenzene | p-terphenyl POPOP
scintillators | Polyvinyltoluene DPO TBP
Polystyrene PBD BBO
DPS POPOP
N O
i _ Polystyrene ‘ @ |
A O N
w H
| o- lerpheny
—C Cli-—
- O
n
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Wavelength Shifting

Principle: Schematics of
wavelength shifting principle

Absorption of
. g : : Polystyrene
primary scintillation light U

Primary  Secondary
fluor fluor

Final fluor

Re-emission at
longer wavelength

- emissions

Adapts light to spectral
sensitivity of photosensor

absorptions

Requirement:

I [ L L ) l L L 1 1
|} {

(Good transparency e

for emitted light 20 30 wavelei%(t)h (nm)

500

] ]
l || |} 1 1
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Organic Scintillators

Scintillator Density Refractive | Wavelength [nm] | Decay time Shotons/MeV
material g/cm?] Index for max. emission constant [ns]

Naphtalene
p-Terpheny 12:10°

NE102° 2.5-10°

NE104° 2.4-10°
NET10° 2.4-10°
NET11" 2.3-10°

3C400™ 2.5:10°
3C428™ 2.2:10°
30443 2.4-10°

* Nuclear Enterprises, U.K.
** Bicron Corporation, USA
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Light Collection/Transmission

Scintillator light to be
guided to photosensor

Scintillator

> Light guide

[Plexiglas; optical fibers]

Light guide

ight transfer by
total internal reflection

'maybe combined with wavelength shifting]

Light guide

Liouville's Theorem:

Complete light transfer | _E

impossible as Ax A6 = const.
limits acceptance angle] PM

Jse adiabatic light guide
ke 'fish tail'; — , ] E

> appreciable energy loss 'fish tail'
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Photocathode —___

Photomultipliers .
lectron optical
input system "‘““‘“*-—u—--.
Focusing
Principle: PRV,

—lectron emission I
from photo cathode First dynode I
|

X0

Secondary emission

from dynodes; dynode gain: 3-50 [f(E)] G i
ultiplier ———

e

———
—

e P W
.

Typical PMT Gain: > 10°

[PMT can see single photons ...]

-
S it

- Anode-- I @ !
il I
" |
W ‘ia H '

. | PMT

| Collection
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Photocathodes
Y-conversion Quantum Efficiency %

via photo effect ...
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1 ;r . t - -
—— All window materials | |
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Electron Multiplication

—lectron —
l I
- R R R
e B = S B S S
Us

Multiplication process:

Electrons accelerated toward dynode
Further electrons produced > avalanche

Secondary emission coefficient:
0 = #(e~ produced)/#(e~ incoming)

Typical: 8 =2-10

Dynodes

R

Anode

Voltage divider

nN=8-15 _

Gain fluctuation: 0 =
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Microchannel Plate

Thin 2D photomultiplier that preserves position information

CHANNEL
o CHANNEL WALL
OUTPUT
INPUT ELECTRODE
ELECTRON P ¥
o— /, OUTPUT
™\ 9% ELECTRONS

INPUT ELECTRODE #

" STRIP CURRENT
N u “Continuous”
amamaisu N -
! dvnode chain
D

— A

[&-. A /(}
Pore @: 2 um 'O .
Pitch: 3 um |[@'g

F

A J

2D Photomultiplier”

Gain: 5-107 |
Fast signal [time spread ~ 50 ps] YWl 4
B-Field tolerant [up to 0.1T] ;

But: limited life time/rate capability
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Silicon Photomultiplier

Principle:

Pixelized photo diodes
operated in Geiger Mode

Single pixel works as a binary device

summing over all pixels

Features:
Granularity : 102 pixels/mm?
Gain . 106

Sias Voltage @ <100V

Insensitive to magnetic fie
Works at room temperatu

—nergy = #photons seen by

—fficiency . ca. 30 %

ds!
e ...
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Electromagnetic Showers

Electrons, positrons, and photons interact with nuclei in matter to produce each other

 High energy electrons radiate all but e-1 of their Y o
energy in a radiation length Xo
= Y
e The mean free path of a high energy photon is )
9/7 Xo e
nucleus nucleus
* Xoscales as A/Z? and becomes small for heavy Bremmstrahlung Pair Production
t
atoms 1 dFE 1 g 9 N
» The two processes together produce Edr X, A
electromagnetic showers A

X0

 4aN4Z%r21n(183/Z3)
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Electromagnetic Showers

At high energies, Bremmstrahlung dominates the energy loss of electrons. As the electron
energy decreases, the ionization loss increases. They become equal at the critical energy E-.

710 MeV
no_ 0.9 (zases
L=

6}1 11\4 262/ Solids/Liquids

e Below Ec, e+ lose their energy quickly
and stop or annihilate [e+]

e A useful related quantity is the Moliere
radius Rm which is related to the
transverse size of an electromagnetic
showetr:

B 21 MeV
— 2

Ry X0

T T TTTT] T T TTTT) T T 1111
B ! . —0.20
! W Lead ( Z =82) -

10 __Electrons X i
=0 4 —0.15
g i \ Bremsstrahlung B
95 \ :

—0.10
ﬁlm B Tonization —

05— 1\1@61’ (e—) :

B}ha/bha (e™) —0.05
Positron > -
annihilation B .
0 R N . | N
| 10 100 1000
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The shower features many generations of electrons/

Electromagnetic Showers

positrons and photons propagating in material until all of

the energy has been deposited. Most of the electrons/
positrons have the critical energy by the shower maximum.

* Shower distribution approx scales vs depth as t = x/Xo

> energy and number of electrons have similar dists

e Shower max ¢

max — In
E

b

C

1.0

0.5 v induced

e induced

 Shower length [,(95%) = t,,.x + 0.8Z + 9.6

o Shower radius R —

Ry

90%

2Ry 957
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Electromagnetic Showers

The shower parameters for several materials used to detect and measure electromagnetic
showers.

Xo [cm] Ec [MeV] Rm [cm]

0.56
Scintillator (Sz) 34.7
Fe 1.70
Ar (liquid)

BGO

Sz/Pb

PB glass (SF5) 2.4

o

10.1
12.0
11.8

w || -
_LK;-h
o
—_— | L I\)
N 1O I N O] =2]10O )| =
W IND]ITWWOWITOT]|IOO] =] O



Calorimetry

Calorimeters are designed to measure the energies [and directions sometimes] of particles by

detecting the energy deposited by showering particles. There are two main types:
passive layer

Sampling calorimeter

active material
D == )
Homogeneous calorimeter \/‘
active layer

e Homogeneous calorimeters contain the entire shower in a dE/dx sensitive medium

> expensive, higher resolution, limited to calorimeters for electrons and photons

Signal Material
Scintillation light BGO, BaFj, CeFs, ...

lonization signal |Liquid noble gases (Ar, Kr, Xe)

Cerenkov light Lead Glass

43




Calorimetry

Calorimeters are designed to measure the energies [and directions sometimes] of particles by
detecting the energy deposited by showering particles. There are two main types:

passive layer
Sampling calorimeter

active material
D == )
Homogeneous calorimeter \/‘
active layer

o Sampling calorimeters intersperse passive and active layers

> can use dense passive layers to evolve showers in a smaller region, cheaper, lower
resolution from sampling fluctuations

» passive materials: Iron, Lead, Uranium (U-238)

> active materials: plastic scintillator, silicon detectors, liguid noble gases, gases
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Sampling Calorimetry

Scintillators as active layer;
signal readout via photo multipliers

Possible setups

Absorber Scintillator Scintillator
- (blue light)

Scintillators as active
layer; wave length shifter
to convert light :

Light guide

Photo detector

Absorber as L
electrodes onization chambers

petween absorber
Dlates Electrodes

HV

Analogue

Active medium: LAr; absorber signal

embedded in liquid serve as electrods



Hadronic Showers

Hlgh energy hadrons interact with nuclei and also produce showers in the calorimeters

| K P
nucieus >n

* Length scale of the shower is determined by the nuclear absorption length of the material Aaos

> defined as the mean free path for inelastic scattering
> most shower particles are gone by 5-10 Aaps
* The pions produced in the shower come in 3 charge states: ri+, 10, -
> the charged pions have relatively long lifetimes and interact with nuclel
> the neutral pions decay promptly to photon pairs: 9 -> 2y
* the photons initiate electromagnetic showers which produce larger signals in the calorimeter

* fluctuations in the number/energy of em showers limits the energy resolution of the calorimeter



Number of counts (arb. units)
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> optimizes the resolution for incident hadrons

Compensating Calorimeters

It was understood many years ago [1970s] that it was desirable to make a calorimeter that
responded in incident hadrons in the same way as e/y: ratio e/h = 1

!

purely hadronic
component
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-
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Constant term in energy resolution (%)

L
2
| l
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e/h (10 GeV)

e Resolution limited by sampling fraction of dE/dx

e Ultimate resolution limited by fluctuations in nuclear binding enery
losses [unlike e/y shower case]
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Compensating Calorimeters

* Results from the Willis group at CERN [1975-1976] U/plastic scintillator suggest that
sampling calorimeters with uranium absorber achieve e/h = 1!

> explained that fission n from the U magically compensate the larger signals from m°

> Idea readily accepted by the HEP community: DO experiment at the FNAL Tevatron
iIncorporates a U-LAr calorimeter

 R. Wigmans [1987] uses simulation to show that this is not exactly true
> there are lots of slow neutrons in any hadronic shower
> need hydrogen in the active layer to detect the neutrons [large np cross section]
> must adjust the thickness of thin plates of absorber material to tune the e/y response
> can make compensating calorimeters with Pb plates too!

> U-LAr calorimeter can never be compensating!
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Calorimeter systems

We want ~10 Aaps and ~25 Xo to fully contain hadronic and em showers. In lead, that’s Tm

and 14 cm. It’s clearly too expensive to use homogeneous calorimeters for hadrons and it’s

not possible to adjust their e/h ratios. The solution is to segment the calorimeter into e/y and

h sections Separated homogeneous and

sampling systems Integrated sampling calorimeter

EM calorimeter Hadron calorimeter EM section Hadronic section

e Homogeneous EM calorimeter and sampling hadronic calorimeter
> very good e/y energy resolution
> need software algorithms to combine information for hadron energies
* |ntegrated calorimeter: finely sampled e/y section and more coarsely sampled h section

> poorer e/y resolution but better hadronic resolution [shower direction in LAr devices]
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CMS System

Inner Detector: Hadron Calorimeter:
o/pPt=5-10% pt @ 0.001 o/E = 100%/JE ® 5%
EM Calorimeters: [vergl. ATLAS o/pi=5 - 10 pt ® 0.001] [vergl. ATLAS: o/E = 50%/\/E @ 3%)]

o/E ~ 3%/,JE ® 0.5%

[vergl. ATLAS: o/E = 10%/\JE @ 0.7%)]
TRACKER Muon Spectormeter

CRYSTAL FCAI o/pt=10% @ 1 TeV
[vergl. ATLAS: o/pt=10% @ 1 TeV]

PRESHOWER

RETURN YOKE

SUPERCONDUCTING
MAGNET
W  FORWARD
Magnet: : | CALORIMETER
Solenoid: 4 T

HCAL
MUON CHAMBERS
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CMS System

PbWOQO4
Brass-scintillator
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CMS

Oom m 7m im am 5m 6m /m

Key:
Muon
Electron
=== (Charged Hadron (e.g.Pion)
— — — - Neutral Hadron (e.q. Neutron)
----- Photon

-
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_‘

)
.
o
4" 4

Silicon

SR
fracker N \?\::
‘ Electromagnetic
}Ij " Calorimeter
/
Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

D Bamay, CERN, Fedricry 2
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