## **Spacetime Diagrams**

- -What is a spacetime diagram?
- -How do you draw a spacetime diagram for an object moving with a constant velocity?
- -What's the benefit of representing relativity this way?



## Light moves at c.

Maxwell's equations

Michelson-Morley experiment

regardless of your reference frame

<u>Reason:</u> Alice is on the ground. Bob is in a high speed rocket (2c/3) relative to Alice. When Bob is directly above Alice, both of them send out laser pulses in each direction.

Which cartoon corresponds to the laser pulses a moment later?



<u>Reason:</u> Alice is on the ground. Bob is in a high speed rocket (2c/3) relative to Alice. When Bob is directly above Alice, both of them send out laser pulses in each direction.

Which cartoon corresponds to the laser pulses a moment later?



4) None of these.

# **Answer: It depends!**

<u>Reason</u>: Alice is on the ground. Bob is at 0.67c relative to Alice. Each have two clocks they want to trigger with light pulses. All the clocks *are on towers*, equidistant from Alice. When Bob is directly above Alice, they both send their signals .

#### Which sets of clocks will be synchronized?

- 1) A & B
- 2) Only A
- 3) Only B
- 4) Neither
- 5) It depends on who you ask.
- 6) Can't be determined.





<u>Reason</u>: Alice is on the ground. Bob is at 0.67c relative to Alice. Each have two clocks they want to trigger with light pulses. All the clocks *are on towers*, equidistant from Alice. When Bob is directly above Alice, they both send their signals .

#### Which sets of clocks will be synchronized?

### 5) It depends on who you ask.

Alice says: Both A & B Bob says: Neither







| Spa   | acet | ime  | Dia<br>iagran | gra | am | S |  |  |  |  |
|-------|------|------|---------------|-----|----|---|--|--|--|--|
| (Minl | kows | ki D | iagran        | ns) |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |
|       |      |      |               |     |    |   |  |  |  |  |

| Spa     | a <b>cetir</b><br>kowsk | me I   | Dia | gra | am  | S |  |  |   |      |       |
|---------|-------------------------|--------|-----|-----|-----|---|--|--|---|------|-------|
| (1,1111 | ROWSK                   | i Diag |     |     | ond |   |  |  |   |      |       |
|         |                         |        |     |     |     |   |  |  |   |      |       |
|         |                         |        |     |     |     |   |  |  |   |      |       |
|         |                         |        |     |     |     |   |  |  |   |      |       |
|         |                         |        |     |     |     |   |  |  |   |      |       |
|         |                         |        |     |     |     |   |  |  | X | (met | ters) |
|         |                         |        |     |     |     |   |  |  |   |      |       |









| Wo   | rld<br>ect | line<br>or | es<br>1 a | = t<br>sp | he<br>ac | gra<br>etii | apł<br>me | ı oʻ<br>dia | f aı<br>agı | n<br>an |            |      |     |
|------|------------|------------|-----------|-----------|----------|-------------|-----------|-------------|-------------|---------|------------|------|-----|
| t () | yr)        |            |           |           |          |             |           |             |             |         |            |      |     |
|      |            |            |           |           |          |             |           |             |             |         |            |      |     |
|      |            |            |           |           |          |             |           |             |             |         |            |      |     |
|      |            |            |           |           |          |             |           |             |             |         |            |      |     |
|      |            |            |           |           |          |             |           |             |             |         | <b>x</b> ( | lt-y | /r) |
|      |            |            |           |           |          |             |           |             |             |         |            |      |     |







## Bob at rest, relative to room.



Wall R

Wall F

| Bob's         |    | t         |   |
|---------------|----|-----------|---|
| Bob's worldli | ne |           |   |
|               |    |           |   |
|               |    |           |   |
|               |    |           |   |
|               |    |           |   |
|               |    | <b>-K</b> |   |
|               |    |           |   |
|               |    |           |   |
|               |    | *         | X |
|               |    |           |   |

| R | Wordlines of  | t | F |
|---|---------------|---|---|
|   | the two walls |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   |   |
|   |               |   | X |
|   |               |   |   |







































cosmic rays create muons in the earth's atmosphere

muons travel about 98% c

muons are detected on the ground



muons travel about 98% c

muon lifetime  $\approx 2 \ \mu s$ 

How far can the muon travel in 2 μs? (non-relativistic)



#### muons travel about 98% c

muon lifetime  $\approx 2 \mu s$ 

How far can the muon travel in 2 μs? (non-relativistic)

$$\mathbf{v} \approx 3 \times 10^8 \text{ m/s}$$
  
 $t \approx 2 \times 10^{-6} \text{ s}$ 

 $\Delta x \approx 600 \text{ m}$ 















|     |             |     | ent |      |      |      |    |      |     |   | • |  |
|-----|-------------|-----|-----|------|------|------|----|------|-----|---|---|--|
| mı  | ıor         | ı's | wo  | rld  | llin | e "  | ve | rtic | al' | • |   |  |
| an  | d t         | he  | lak | ) fr | am   | ie k | ре |      |     |   |   |  |
| the | <b>e</b> "s | squ | ıee | ze   | d"   | ax   | es |      |     |   |   |  |
|     |             |     |     |      |      |      |    |      |     |   |   |  |
|     |             |     |     |      |      |      |    |      |     |   |   |  |
|     |             |     |     |      |      |      |    |      |     |   |   |  |
|     |             |     |     |      |      |      |    |      |     |   |   |  |
|     |             |     |     |      |      |      |    |      |     |   |   |  |









#### **Time Dilation**

Each frame
"correctly" observes
the other frame's clocks
to be running too slowly.

# How far does the muon travel?







## What does the "length of something" mean?







## **Length contraction:**

# Moving objects have contracted lengths (in the direction of motion).







G.Gamow Mr. Tompkins





## Length contraction:

Moving objects have contracted lengths (in the direction of motion).



(Or you can use hyperbolic graph paper)

Where the hyperbolas are asymptotic to v = +/-c.

Geometrically, a Lorentz transform is equivalent to sliding a spacetime coordinate along this hyperbola.

(I don't teach hyperbolic geometry to HS students though.)



## **Spacetime Diagrams**

### **Input**

- x vs. t graphs
- how to "read off" a graph
- x & t axes "squeezed" so that photon worldline "splits the uprights"

### **Output**

- -relativity of simultaneity
- -time dilation
- -length contraction



#### **Lorentz Transformation**





The primed frame moves with velocity v in the x direction with respect to the fixed reference frame. The reference frames coincide at t=t'=0. The point x' is moving with the primed frame.



The reverse transformation is:

$$x = \frac{x' + vt'}{\sqrt{1 - \frac{v^2}{c^2}}} \qquad t = \frac{t' + \frac{vx'}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\rho = \frac{1}{c}$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{2}}}$$

Much of the literature of relativity uses the symbols  $\beta$  and  $\gamma$  as defined here to simplify the writing of relativistic relationships.

Evaluation of symbols

