Arduino Mega Coding Tutorials to Use with the
Cosmic Ray Detector
DAQ Electronics

Gabe Kim / Fatima Sareem./'sonﬁa Rostami / Lily Carter / Sam Resto

Queenshorough Community College.

Mentor: R. Armendariz

Module |

Hardware Overview

What is Arduino?

Arduino is an open-source electronics platform that combines hardware and software to create interactive projects.
It utilizes a variety of microcontroller-based boards, which can be programmed using the Arduino IDE (Integrated
Development Environment), a software application where you write the code that tells the Arduino what to do.

Software Hardware

Instructions

) o ow
Data

Hardware Overview

Your first step should be to familiarize yourself with the hardware you’ll be using. Understanding the purpose and
function of each component is important for resolving troubleshooting issues and designing effective circuits. It also
helps prevent damage by ensuring safe connections and simplifies the integration of components into your projects,
improving overall functionality and reliability.

8

@
vy
88
£ w0

b 4

b

3

2

™
—
o~
@
—
~
e

@ 0.56" 7-segment LED HT16K33 Backpack @@

= me. = oea.

apaqge =t

Uwwwww
Resssw
R

.
.
-
-
-
=

LR S
e sasa
Bawwan
Hewnwn
Hewwww
EEE R

& =

] rius

EmmEEm SsmaEm SEmEEeEe sSEsE=ss ===

Microcontroller

Arduino Mega 2560

The Arduino Mega 2560 is a type of microcontroller, Microcontroller — Arduino Mega 2560
which is a small computer on a single circuit board. It
is used to control various electronic devices and
projects. Imagine it as the "brain" that tells other
parts what to do.

Here’s how it works:

*Inputs: It can take signals from sensors (like a
temperature sensor or a GPS chip) that provide
information.

*Processing: The Arduino uses this information to
make decisions based on a program (set of
instructions) that you write in your code.

*Outputs: After processing the inputs, it can control
things like lights, motors, or sounds by sending
signals to them.

’ 1
-38
-40 1
42
44

‘1‘ DIGITAL
a1s 0/88%

Microcontroller - Power Pins

Arduino Mega 2560 Pins

The GND pins on the Arduino Mega 2560 are used to complete the
electrical circuit by providing a common ground. There are multiple
GND pins on the board, and they are all interconnected internally. Any
device or sensor connected to the board that requires power must also
be connected to one of the GND pins to ensure proper current flow and
circuit stability.

The Vin pin is used to supply external power to the Arduino Mega 2560
when it is not connected to a computer via USB. You can connect a
power source like a battery or an external power adapter to this pin.
The voltage input should typically be between 7-12V. The onboard
voltage regulator then steps this down to the 5V required to power the
board. When the board is powered through Vin, it provides a way to
power both the board and external components without relying on USB
power.

The IOREF pin on the Arduino Mega 2560 provides the reference voltage for
the board’s input/output pins, typically 5V, letting external components know
the board’s logic voltage. This is important because different devices may
operate at different logic levels (e.g., 3.3V or 5V), and the IOREF pin helps
them adapt to the correct voltage. Logic voltage refers to the voltage levels
used to represent digital signals (binary 1/0), where "high" is typically 5V and
"low" is OV. This pin ensures safe communication and prevents potential
damage from voltage mismatches.

Microcontroller - Power Pins

Arduino Mega 2560 Pins

The 3.3V pin provides a regulated 3.3V output for powering
components or sensors that operate at lower voltages. This is especially
useful for devices that require lower voltage, as connecting them to the
5V pin might damage them. The 3.3V pin is powered by an onboard
voltage regulator, ensuring that it delivers a stable 3.3V output.

The 5V pin supplies a regulated 5V output, which can be used to power
external components or sensors that require 5V to operate. This pin is
powered either through the USB connection or via the voltage regulator
when the board is powered through the Vin pin. It provides a stable 5V,
making it convenient for powering devices directly from the board
without needing an additional power supply.

The Reset pin is used to reset the microcontroller on the Arduino Mega 2560.
When you connect this pin to ground, it triggers a manual reset of the board.
This can be useful in situations where you need to restart the board and
reload the program, without disconnecting power or hitting the physical reset
button. It's often used in circuits where automatic or remote resets are
required.

Microcontroller - Analog Pins

Arduino Mega 2560 Pins

The pins in the analog section (A0 — 15) of the Arduino Mega 2560 are used for reading
analog input signals and converting them into digital values that the microcontroller can
process.

* Function: These pins are used to read varying voltage levels from sensors or other
input devices (e.g., temperature sensors). They can measure a range of voltages
between OV and 5V.

* Analog-to-Digital Conversion (ADC): The Arduino Mega has a 10-bit ADC, which
means it can convert the analog input into a digital value between 0 and 1023. For
example, OV would be read as 0, and 5V would be read as 1023, with values in
between representing the corresponding voltage.

* Analog input signals are continuous, variable electrical signals that can take on a
range of values, unlike digital signals, which are either on (1) or off (0).

@

LOGC
_.5 23432320

The AREF pin (Analog Reference Pin) on the Arduino Mega 2560 is used to set a custom reference
voltage for the analog-to-digital converter (ADC). By default, the Arduino uses 5V as the reference
voltage, meaning that it maps input voltages between 0 and 5V to a digital range of 0 to 1023.

However, by connecting a different voltage to the AREF pin (typically between 1.1V and 5V), you can
adjust this range to match the expected input from your sensors, improving accuracy. For example, if
your sensor outputs a maximum of 2.5V, you can set the AREF to 2.5V, and the Arduino will map the
input more precisely across the 0 to 1023 range. However, setting the AREF voltage too low (like
0.005V) would reduce the resolution significantly and might result in unusable or noisy data.

Microcontroller — Digital Pins

Arduino Mega 2560 Pins

The digital pins on the Arduino Mega 2560 are used for input and output of digital signals.

These signals can only have two states: HIGH (on) or LOW (off). When used as inputs,
digital pins can read the state of external devices like buttons, switches, or sensors,
detecting whether they are in an on/off state. When used as outputs, the digital pins can
control devices such as LEDs, motors, or relays, by sending a HIGH (5V) or LOW (0V) signal
to turn them on or off.

* Pins D22 to D53 can be used as digital inputs or outputs.
* HIGH/LOW Logic: The pins output 5V when set to HIGH and OV when set to LOW.

*** The digital pins can be utilized by code written in the Arduino IDE to control the
function of external components.

= 2 @ @ ARDUINO
R s gza23:% 2o

<o <<«

Microcontroller - Communication Pins

Arduino Mega 2560 Pins

TX Pins (TXO0, TX1, TX2, TX3): These pins are used to transmit data from the
Arduino to other devices. Each TX pin corresponds to a specific serial port: TXO0 is
associated with Serial, TX1 with Seriall, TX2 with Serial2, and TX3 with Serial3.
When the Arduino sends data, it sends it out through the appropriate TX pin,
which can be connected to the RX pin of another device for communication.

RX Pins (RX0, RX1, RX2, RX3): These pins are used to receive data from external
devices into the Arduino. Each RX pin corresponds to a specific serial port: RX0 is
associated with Serial, RX1 with Seriall, RX2 with Serial2, and RX3 with Serial3.

When data is sent from another device, it enters the Arduino through the :
appropriate RX pin, allowing the microcontroller to process the incoming data. | s - — e ARDUIND

38
40
2
45
46
a8
50
52

~
v «

Al4
AlS

ERFFFFEE

What is Serial Data?

All TX pins operate using the same serial communication protocol (UART). This means they all transmit data in the same way, using the same format
(typically a start bit, 8 bits of data, then a stop bit).

Bit-by-Bit Transmission: In serial communication, data is transmitted one bit after another.

Start and Stop Bits: In asynchronous serial communication, each data packet typically starts with a start bit and ends with one or more stop bits. This helps
the receiving device know when to start and stop reading the incoming data

Data Rate: Serial communication is characterized by its baud rate, which is the number of signal changes or symbols sent per second. This is important for
determining the speed of data transmission.

Microcontroller - Communication Pins

Arduino Mega 2560 Pins

The SDA pin is the Serial Data Line used for 12C (Inter-Integrated Circuit)
communication. It is responsible for carrying the data being transmitted between
the master device (e.g., the Arduino) and one or more slave devices (such as
sensors, displays, or other microcontrollers). The SDA line is bidirectional, allowing
data to flow in both directions, depending on the communication needs.

The SCL pin is the Serial Clock Line for I2C communication. It provides the clock
signal that synchronizes the data transmission over the SDA line. The master
device generates the clock signal on the SCL pin, which ensures that both the
master and slave devices are synchronized in terms of timing during data
exchange. The SCL line is essential for coordinating when data bits are read from
or written to the SDA line.

§
.)

ARDUINO

22323%

~
v «

Microcontroller - PWM Pins

Arduino Mega 2560 Pins

On the Arduino Mega 2560, the following pins are capable of generating PWM signals and
here are their default assigned timers:
* Pin 2: PWM Output (Timer 3)
* Pin 4: PWM Output (Timer 0)
* Pin 6: PWM Output (Timer 4)
* Pin 8: PWM Output (Timer 4)
* Pin 10: PWM Output (Timer 2)
* Pin 12: PWM Output (Timer 1)

Pin 3: PWM Output (Timer 3)
Pin 5: PWM Output (Timer 3)
Pin 7: PWM Output (Timer 4)
Pin 9: PWM Output (Timer 2)
Pin 11: PWM Output (Timer 1)
Pin 13: PWM Output (Timer 0)

Timer Differences

:

ARDUINO

Feature Timer 0 (4,13) Timer 1 (11,12) Timer 2 (9,10) Timer 3 (2,3,5) Timer 4 (6,7,8)
Bit Resolution 8-bit 16-bit 8-bit 16-bit 16-bit
Count Range 0to 255 0to 65,535 0to 255 0to 65,535 0to 65,535

Special Functions

Basic timing, PWM

Input capture, output
compare, high-
resolution PWM

Basic timing, PWM

Input capture, output
compare, high-
resolution PWM

Input capture, output
compare, high-
resolution PWM

Description

Used for general-
purpose timing and
PWM.

High-resolution timing
and precise PWM.

Similar to Timer O,
used for PWM
generation.

Advanced timing and
PWM capabilities.

Similar to Timer 3,
provides high-
resolution PWM.

Microcontroller — Reset Button

Arduino Mega 2560 Reset Button

On the Arduino ATmega2560, the reset button essentially restarts the microcontroller,
stopping all current processes and returning it to the initial state. Here’s what happens
when you press it:

* Program Restart: The microcontroller stops its current program, clears any ongoing
tasks, and restarts from the beginning of the loaded code.

* Memory and Variables: Temporary variables and states stored in RAM are cleared.
Non-volatile storage (EEPROM and Flash memory) remains unchanged, meaning stored
code and saved data stay intact.

* Bootloader Activation: If the reset occurs while the Arduino is connected to a
computer (like during programming), it briefly enters bootloader mode, allowing it to
accept new code if uploading.

The reset button is handy for debugging, allowing you to restart the Arduino without
unplugging it or cycling power.

Temp. & Pressure Sensor

Adafruit BMP280 - Barometric Pressure and Temperature Sensor

The BMP280 sensor measures the temperature and
barometric pressure of the surrounding air or
environment in which it is placed. It detects the
ambient temperature and the atmospheric pressure
and is responsible for sending that data to the
microcontroller.

CO

Temp. & Pressure Sensor

Adafruit BMP280 Sensor Pins

The VIN (Voltage Input) pin on the BMP280
sensor is used to connect the sensor to a
power supply. It typically accepts a voltage
range of 3.3V to 5V, allowing the sensor to
operate. This pin provides the necessary
power for the sensor to function and perform
measurements of temperature and barometric
pressure.

BMP280
Pressure &
@ . 'emp Sensor —,

The 3Vo (3 Volt) pin is used to provide a
regulated 3.3V output. This pin can be used to
power other components in your project, such
as sensors or small devices that require 3.3V. It
allows you to simplify your wiring by drawing
power from the BMP280 module instead of
using a separate power supply.

121 Wﬂlﬂl

GND . SDO
0000000

3\lo SCK SDI

The SCK pin (Serial Clock) is used in SPI (Serial
Peripheral Interface) communication to provide a
timing signal from the master device (usually a
microcontroller) to the BMP280 sensor.

In this setup, the SCK pin acts as a clock that
synchronizes the data exchange between the
master and the sensor. When the microcontroller
sends a signal on the SCK pin, it indicates to the
BMP280 when to read or send data. This ensures
that both devices are working in harmony, allowing
for accurate communication. Without the SCK pin,
the sensor and microcontroller wouldn't be able to
coordinate their data transfer effectively,
potentially leading to errors in the information
exchanged.

The GND pin (Ground) on the BMP280 sensor is used to establish the
ground connection for the sensor. This pin completes the electrical
circuit by providing a common reference point for voltage levels. It
should be connected to the ground (negative) terminal of your power
supply or microcontroller. Proper grounding is essential for the sensor
to function correctly, as it helps to stabilize the signals and prevent

noise in the system.

Temp. & Pressure Sensor

Adafruit BMP280 Sensor Pins

The SDO pin (Serial Data Out) on the BMP280
sensor is used to send data from the sensor to
the microcontroller. When the microcontroller
requests information, such as temperature or
pressure readings, the BMP280 transmits that
data back through the SDO pin. Essentially, it
acts as a communication line, allowing the
sensor to share its measurements with the
microcontroller for further processing in your
project.

The SDI pin (Serial Data In) on the BMP280
sensor is used to receive data from the
microcontroller in SPI (Serial Peripheral
Interface) mode. When the microcontroller
sends commands or configuration settings to
the BMP280, it does so through the SDI pin.
This pin allows the sensor to receive
instructions about what data to collect or how
to operate, enabling communication between
the sensor and the microcontroller.

BMP280

Pressure &
e . emp Sensor

mml

GND Shp | €S

OOOOOOO

V0. SCK o S

The CS pin (Chip Select) on the BMP280 sensor is
used to manage communication in systems where
multiple devices share the same connection. When
the microcontroller wants to communicate with the
BMP280, it pulls the CS pin low to indicate that this
particular sensor is selected for data exchange. This
prevents confusion by ensuring that only the
chosen device responds to commands, while others
remain inactive. Essentially, the CS pin acts as a
switch, allowing the microcontroller to focus on
one device at a time for clear and organized
communication.

LED Backpack Counter

Adafruit LED Backpack Counter

The Adafruit LED Backpack Counter is a small, ready-
to-use display that shows numbers (and sometimes
letters) on its LED digits. It's perfect for projects
where you need to display things like scores, timers,
counters, or other numerical data.

0.56" T-segment LED HT16K33 Backpack

LED Backpack Counter

Adafruit LED Backpack Counter

The D pin corresponds to the SDA line and is responsible for
carrying the actual data. This is where the microcontroller

sends instructions, like which digits or symbols to display and The C pin, on the other hand, corresponds to the SCL line,
which segments of the LEDs to light up. This line is bi- which provides the clock signals necessary to synchronize the
directional, meaning that it not only allows the microcontroller data transfer. The clock ensures that the data on the D pin is
to send commands but also enables the LED Backpack to send transmitted and received in a well-timed and organized
acknowledgments or other responses back if needed. manner, preventing errors during communication.

The + and - pins on the Adafruit LED
Backpack are used to supply power to the
module. The + pin is the positive power
input, also referred to as VCC. It provides
the voltage needed to power the LED
display and its onboard controller chip.
The - pin, on the other hand, is the
ground connection, referred to as GND. It
serves as the return path for the electrical
current, completing the circuit. The - pin
must be connected to the ground pin of
the microcontroller or power source to
ensure proper operation.

0.56" 7-segment LED HT16K33 Backpack

GPS Module

Adafruit Ultimate GPS Breakout v.3

The Adafruit Ultimate GPS Breakout v3 is a compact GPS
module designed for accurate location tracking and navigation.
It integrates easily with microcontrollers and offers a variety of
features to enhance project functionality.

e Accurate GPS Data: Provides precise location information,
including latitude, longitude, and altitude.Speed and
Direction: Calculates speed and movement direction for
navigation purposes.

* NMEA Output: Outputs data in standard NMEA format for
easy integration with microcontrollers like Arduino or
Raspberry Pi.

* Timekeeping: Offers accurate time data based on GPS
signals, including UTC (Coordinated Universal Time).

e Battery Backup: Includes a battery backup option to
maintain real-time clock and satellite information, ensuring
faster GPS fixes after power loss.

GPS Module

Adafruit Ultimate GPS Breakout v.3 Pins

The 3.3V pin provides a regulated 3.3V output.
This pin can be used to power other
components or sensors in your project that
require a 3.3V power supply. It allows users to

draw power directly from the GPS module,
simplifying connections and reducing the need
for additional power sources.

The EN pin (Enable pin) is used to enable or
disable the GPS module's functionality. When the
EN pin is pulled high (connected to a voltage
source), the GPS module is activated and begins
receiving GPS signals. Conversely, pulling the EN
pin low (connecting it to ground) puts the
modaule into a low-power sleep mode, reducing
power consumption. This feature is particularly
useful in battery-powered projects, allowing
users to save energy when the GPS functionality
is not needed.

Ultimate GPS .
Breakout v3

* adafruit! ﬁ

The VBAT pin is used to connect a battery for
backup power. This pin allows the GPS module to
maintain its real-time clock and satellite
information even when the main power is turned
off. By connecting a battery to the VBAT pin, the
module can quickly acquire GPS signals when
power is restored, reducing the time it takes to
get a location fix. This feature is particularly
useful in battery-operated projects where power
may be intermittent.

The FIX pin serves as an indicator of the GPS module's fix status. When
the pin is high, it signifies that the GPS has successfully acquired a valid
position fix and is receiving usable GPS data. If the pin is low, it means
the GPS is still searching for a signal or has not established a reliable fix.
Status Indicator: The FIX pin provides a simple way to monitor whether
the GPS module is functioning correctly and has a valid location.

GPS Module

Adafruit Ultimate GPS Breakout v.3 Pins

The TX pin (Transmit pin) is used to send data
from the GPS module to a microcontroller or
other devices. When the GPS module has
processed location data—such as latitude,
longitude, speed, and time—it transmits this
information through the TX pin in standard
NMEA format. This allows the microcontroller
to receive and interpret the GPS data for use
in various applications, such as navigation or
location tracking. We'll review NMEA
formatted data elsewhere.

Ultimate GPS .
Breakout v3

* adafruit! ﬁ

The RX pin (Receive pin) is used for receiving data from a microcontroller or other
devices. When the microcontroller sends commands or configuration settings to the GPS

modaule, it does so through the RX pin.

The PPS pin (Pulse Per Second pin) provides a
highly accurate timing signal that is synchronized
with GPS time.

*** The GPS module may require periodic
synchronization with GPS satellites to maintain
accurate time and position data, especially after
power loss or when it first acquires a signal.

Functions of the PPS Pin:

*Accurate Timing: The PPS pin emits a pulse at
the start of each second, corresponding precisely
to GPS time. This allows for extremely accurate
timekeeping, to within a few nanoseconds.
*Digital Output: The output is a digital signal,
typically transitioning from low to high at the
start of each second, making it easy to interface
with microcontrollers and other digital systems.

*** The VIN pin and the GND pin have the same functions as previously described for the BMP280 Sensor.

Module |I

Software Overview - Arduino IDE

Arduino IDE

Arduino IDE (Integrated Development Environment)

Now that we are familiar with the hardware we’ll be working with, let us introduce the software.

1%t Step: Plug in the USB Type B cable into the Arduino board and the computer.
This will allow you to communicate to the microcontroller from your computer
and vice-versa.

Arduino IDE

Arduino IDE (Integrated Development Environment)
2" Step: Find the icon on your desktop to open up the Arduino IDE.

The code you write in the Arduino IDE is called a sketch, and the Arduino compiler handles all the
setup to convert it into machine language for the microcontroller. It utilizes a simplified subset of

C++ with a few custom libraries simplifying C++ to be more accessible for prototyping and
hardware interaction.

& sketch_oct30b | Arduino IDE 2.3.3

Check for proper board selection:

1. Navigate to the toolbar and select
Tools.

2. Go to Boards > Arduino AVR Boards

P P » P P P B P P P P P

3. Select the model of the board you
are using. In this case, it is the
Arduino Mega or Mega 2560.

A
A
Li
Li
A
A

Ln1,Col1 Arduino Mega or Mega 2560 on COM1 Q

4:56 PM
~ D
) 10/30/2024

& sketch_oct30b | Ar
File Edit Sketch

Check for proper port selection:

1. Navigate to the toolbar and select
Tools.

2. Go to Ports.

3. Select the COM port that shows the
model of your microcontroller
alongside it.

*%** Occasionally, the security software installed on campus computers will flag the Arduino, blocking its
connection. If you have connection issues with the Arduino board, try closing the IDE, unplugging the board
and reconnecting it. Using the reset button on the Arduino board may also help.

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q

4.56 PM
~)
E? P 10/30/2024

& sketch_oct30b | Arduino IDE 2.3.3

File Edit Sketch Tools Help

‘ Y Arduino Mega or Meg... ~

sketch_oct30b.ino
setup() {

- Opening the Serial Monitor:

5) Now that you have your board and port
properly selected in the application, let
us bring up our Serial Monitor within
the program. Two ways to bring it up
are circled here.

Ln8, Col1 Arduino Mega or Mega 2560 on COM10 ol8
~—

511 PM
~)
Q? & 10/30/2024

& sketch_oct30b | Arduino IDE 2.3.3

File Edit Sketch Tools Help

‘ Y Arduino Mega or Meg... ~

sketch_oct30b.ino

What is the Serial Monitor:

o 1. Displays Output: It shows the data sent from the Arduino board to your computer,
> allowing you to monitor sensor readings, status messages, and other output. g

2. Send Input: You can send data from your computer to the Arduino by typing in the
input box and pressing Enter to send. This is useful for controlling your program or
changing parameters on the fly.

3. Baud Rate Configuration: You can set the baud rate, which determines how fast data is
transmitted between the Arduino and your computer. Both the Serial Monitor and the
Arduino need to be set to the same baud rate for proper communication.

Serial Monitor x

Ln8, Col1 Arduino Mega or Mega 2560 on COM10 O B

519 PM
~)
Q? & 10/30/2024

Module Il

BMP 280 Sensor Test:
Ambient Pressure, Temperature & Altitude

& sketch_oct30b | Arduino IDE 2.3.3

File Edit Sketch Tools Help

‘ Y Arduino Mega or Meg... ~

sketch_oct30b.ino
setup() {

BMP 280 Sensor Test

loop() { Let us experiment with this a little using the microcontroller and the BMP280 sensor.
8 Before we begin, make sure that you have the proper libraries installed so that the IDE
can understand the code we have scripted for you.

Start by clicking on the Library icon in the left hand column.

Serial Monitor x

Ln8, Col1 Arduino Mega or Mega 2560 on COM10 Q B8

519 PM
~)
Q? & 10/30/2024

& sketch_oct30c | Arduino IDE 2.3.3

File Edit Sketch Too

{ Arduino Mega or Meg... ~ N

LIBRARY MANAGER sketch_oct30c.ino
| 1 setup() {
Type: |Al hdl
Topic: [All v }
i) AlPIc_Opta by Arduinc loop() {

Arduino IDE PLC runtime library for Arduino Opta
This is the runtime library and plugins for }
supporting the Arduino Opta in the Arduino PLC...

20) BMP 280 Sensor Test

AIPIc_PMC by Arduir

It should open up the Library Manager where you can install and remove libraries of

Arduino IDE PLC runtime library for Arduino

Ryt e b Semor B A code from the IDE. For our purposes, we need to find the library made for our
os S particular component, which is the Adafruit BMP 280 Temperature and Pressure
| Sensor.

Arduino Cloud Provider Examples by

In the search bar, type in Adafruit BMP280.

Examples of how to connect various Arduino
boards to dloud providers

(121~

Arduino Low Power |

Power save primitives features for SAMD and
ARES2 32bit boards With this library you can

manage the low power states of newer Arduino...

?71,2,2 v

Arduino SigFox for MKRFox1200 by

Helper library for MKR Fox 1200 board and
ATABB520E Sigfox module This library allows

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 o

5:28 PM
~)
E‘? & 10/30/2024

& sketch_oct30c | Arduino IDE 2.3.3
File t ketch Tools Help

‘ Y Arduino Mega or Meg... ~

LIBRARY MANAGER

| adafruit bmp280)
Type: |Al hdl
Topic: | All v

Adafruit BMP280 Library by Adafruit

Arduino library for BMP280 sensors. Arduino library
for BMP280 pressure and altitude sensors.

[
i2,6‘8 v INSTALL

N ©
sketch_oct30c.ino
| setup() {
}
loop() {
}

BMP 280 Sensor Test

Install the library ensuring it matches the one shown here. If you only see an option to
remove it, then it’s already installed and you can skip this step.

***You should receive a prompt once you click Install. Make sure to select Install All
when asked.

Install library dependencies X

The library Adafruit BMP280 Library:2.6.8 needs some other dependencies currently not installed

- Adafruit BuslO
- Adafruit Unified Sensor

Would you like to install all the missing dependencies?

(INSTALL WITHOUT DEPENDENCIES) ()

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 o

5:34 PM
~)
Cj P 10/30/2024

BMP 280 Sensor Test

Using the breadboard

1. Connect the BMP 280 Sensor to the breadboard.

2. To connect the BMP280 to the Arduino, the jumper wire must be placed into the breadboard slot next to the
sensor’s pin.

3. Once your jumper wires are connected to the BMP280, make the following connections to the Arduino:

Connections

| Arduino__| _BMP 280

(Power) 5V VIN v L =
(Power) GND GND e o
(PWM) Pin 10 cs %@ .
(PWM) Pin 11 SDI But ot across S

the middle divider
(PWM) Pin 12 SDO =
|]

(PWM) Pin 13 SCK

BMP 280 Sensor Test

Setup

Here is what your setup should look like!

Connections
arduino | 6MP 230
(Power) 5V VIN
(Power) GND GND :
(PWM) Pin 10 cs
(PWM) Pin 11 SDI '
(PWM) Pin 12 SDO

(PWM) Pin 13 SCK

& sketch_oct30d | Arduino IDE 2.3.3
ketch Tools elp

BMP 280 Sensor Test

Now that our hardware is properly connected, let us return back to the IDE and open up a

prewritten code to test the sensor. Go to:
File > Examples > Adafruit BMP280 Library > BMP280 Test

**This will open up a new window containing prewritten code.

Adafruit BM

Serial Monitor x

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q B8
6:26 PM

~
D om072024

& bmp280test | Arduino IDE 2.3.3

| ¢ Arduino Mega or Meg... ~ N

bmp280test.ino

BMP 280 Sensor Test

By default, there is some code that is “commented out”. This is done by
beginning the line with a double forward slash (i.e. //), effectively disabling it.
For our purposes here, we will need to enable them.

e Navigate to the text highlighted here.
ide <iire.h> Add // to the beginning of the first line, disabling it, and remove the // from

e <SPI.h>

<Adafrult_BHP288.h> the third line to enable that one.

Leave the second line alone.

27 Adafruit_BMP280 bmp;

up() {
2gin(9600) ;

(!Serial) delay(1ee);

Serial.println(F("BMP280 test"));

status;

tatus = bmp hegin();
if (Istatus) {
Serial.println(F("Could not find a valid BMP28@ sensor, check wiring or "

“"try a differe
print("SensorID was: €x") In(t riD(),16);
ID of OxFF
ID of @x56-8x58
ID of exee
ID of ©x61 repr

Ln27,Col28 Arduino Mega or Mega 2560 on COM10 Q

6:30 PM
~)
E? P 10/30/2024

& bmp280test | Arduino IDE 2.3.3

{ Arduino Mega or Meg... ~
Ex L L 7 Reminder: You can use the button in the top right to pull up the serial monitor.

bmp280test.ino

BMP 280 Sensor Test

Note that the baud rate selected in the serial monitor must match the baud rate

Adafruit_BMP28@ bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK); .) . .
ety | defined in the code, otherwise your results will be off.

32 erial.begin(9600);
(!Serial) delay(108); r
it s(CIo e beea) So open up the serial monitor again, and make sure you have 9600 baud selected. B
ctatis ~ bap begin()s L The baud rate in the sketch is defined by the code:
if (!status) { H H .
Serial.println(F("Could not find a valid BMP28@ sensor, check wiring or " Serlal.begln(gsoo)'
"try a different address!™));
Serial.print(“SensorID was: @x"); In{bmp.sensorID(),16);
S -print(" ID of @xFF pro s a bad address, a BMP 180 or BMP €85\n");
S -print(" ID of @x56-8x58 repre a BMP 280,\n");
S rint (™ ID of @x60 r sents a BME 280.\n");
er ID of ©x61 represents a BME 688.\n");
whi /(10)
}
bmp.setSampling(Adafruit_BMP28@: :MODE_NORMAL, <
Serial Monitor x -0 =
New Line "_H 9600 baud

Ln 32 Col1 Arduino Mega or Mega 2560 on COM10 Q B8

6:40 PM
~)
E? P 10/30/2024

& bmp280test | Arduino IDE 2.3.3
FipmTomsNetch To

Y Arduino Mega or Meg... ~ N
Zinp280tesiino
(¢5)]
(12)

" BMP 280 Sensor Test

Now, let us run the code and test to see if component is reading properly.
Click on the check mark to compile the code, which also checks for errors.

Adafruit_BMP280 bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK);

setup() {
2 posialbeginton; Once cleared, hit the forward arrow to run the code.
€ !Seria delay(108); r
Serial ~intln(F("BMP288 test")); m
status;
status = bmp. ‘-;':XS‘TO;
f (!status) {
nsorID(),16);
address, a BMP 180 or BMP €85\n");
ID of @x56- s a BMP 280,\n");
ID of s a BME 280.\n");
1 ID of ©x61 represents a BME 688.\n");
i e (1) delay(1@);
}
bmp.setSampling(Adafruit_BMP28@: :MODE_NORMAL,
Serial Monitor x ¥y 0=

Ln 32 Col1 Arduino Mega or Mega 2560 on COM10 Q B8

6:40 PM
~)
E? P 10/30/2024

& bmp280test | Arduino IDE 2.3.3

{ Arduino Mega or Meg... ~ N

bmp280test.ino

BMP 280 Sensor Test

The code is read by the Arduino which communicates with the senseor, returning
the results as seen below in your serial monitor displaying the temperature,
pressure, and altitude of your location.

Once successful, move on to the next slide to begin our next component test.

ﬁlii;f;}t . ***The most common issues arise from not having the correct COM port selected.
o (;3) If you’re having trouble double check your port selection and if that’s fine, try

e et s resetting the Arduino board by pressing the button near the USB port on the
St microcontroller.

Adafruit_BMP28@ bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK);
30

Ser:.

Serial Monitor x

25:57:32.244 -> Pressure = 102000.42 Pa
18:57:32.276 -> Approx altitude = -56.08 m
18:57:32.319 —>

18:57:34.244 -> Temperature = 22.68 *C
18:57:34.277 -> Pressure = 102000.25 Pa
18:57:34.277 —> Approx altitude = -56.07 m
18:57:34.312 ->

18:57:36.259 -> Temperature = 22.68 *C
18:57:36.292 —> Pressure = 102000.59 Pa
18:57:36.292 -> Approx altitude = -56.10 m
18:57:36.331 —>

Ln 30, Col 1 Arduino Mega or Mega 2560 on COM10 22 8

657 PM
~)
E’? & 10/30/2024

BMP 280 Sensor Test

Identifying Data Transmission Speed

There are a few pieces of information you can gather from this test:

(a) temperature, pressure, and altitude of your location

(b) the length of time it takes to send a set of data (temperature, pressure, & altitude)
(c) how often it sends this data

Sedal Mo % Cuspe To find (b) the length of time it takes to send a set of data, subtract the

e timestamps of the first and last data points from the set. (1 from 2)

18:57:32.244 -> Pressure = 102000.42 Pa
18:57:32.276 -> Approx altitude = -56.08 m

i:;;;:;iz :i Temperaruie — Z2L68 AC 34.277 - 34.244 =.033 seconds to transmit a complete set of data (33 ms)

18:57:34.277 -> Pressure = 102000.25 Pa

18:57:34.277 -> Approx altitude = -56.07 m
18:57-34 312 ->
18:57:36.259 - Temperature = 22.68 *C

18:57:36.292 -> Pressure = 102000.59 Pa To find (c) how often it sends data, subtract the timestamps of the first items

18:57:36.292 -> Approx altitude = -56.10 m

18:57:36.331 —> from two consecutive sets of data. (1 from 3)

36.259 - 34.244 - 2.015 seconds between data transmission

Module |V

LED Backpack Counter Test
w/ Arduino Generated Pulses

& bmp280test | Arduino IDE 2.3.3

File Edit Sketch

‘ { Arduino Mega or Meg... ~ N

LIBRARY MANAGER bmp280test.ino
Type: [Al v|
Topic: | All v

AlPlc_Opta by A

Arduino DE PLC runtime library for Arduino Opta
This is the runtime library and plugins for
supporting the Arduine Opta in the Arduino PLC...

LED Backpack Counter Test -

- To begin testing this component, we must make sure the proper libraries are installed,

- just as we did for the sensor. Open up the library manager again, by clicking on the
“icon in the panel to the left.

AlIPIc_PMC by Arduir

Arduino IDE PLC runtime library for Arduino
Portenta Machine Control This is the runtime
library and plugins for supporting the Arduino...

(106 v

P_ . . .
Arduino Cloud Provider Examples by . In the search bar, type in Adafruit LED Backpack Library.
Examlpies of how to connect various Arduino

boards to dloud providers

Adafruit_BMP28@ b BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK);

¥ =

Arduino Low Power by Arduin * || 9600 baud v
Power save primitives features for SAMDand @~ ~——"-""- =SS SRS =
ARES2 32bit boards With this library you can 19:36:07.174 -> Pressure = 101981.96 Pa
manage the low power states of newer Arduino... 19:36:07.207 -> Approx altitude = -54.55 m

19:36:07.247 —>
"7 19:36:09.167 -> Temperature = 22.46 *C
\,1'2'2 i 19:36:09.167 -> Pressure = 101981.96 Pa

19:36:09.199 —> Approx altitude = -54.55 m

19:36:11.178 -> Temperature = 22.46 *C

Arduino SigFox for MKRFox1200 by 19:36:11.211 —> Pressure = 101981.78 Pa
Arduina 19:36:11.211 -> Approx altitude = -54.54 m
Helper library for MKR Fox 1200 board and 19:36:11.245 —>

ATABB520E Sigfox module This library allows
Ln 30, Col 1 Arduino Mega or Mega 2560 on COM10 22 8

418 PM
~ ()
E? B 10/31/2024

& bmp280test | Arduino IDE 2.3
File

‘ { Arduino Mega or Meg... ~ N

LIBRARY MANAGER bmp280test.ino

adafruit led backpack

Type: |All v|
Topic™ |All v|

LED Backpack Counter Test

Adafruit LED Backpack Library for our 8x8 matrix
and 7-segment LED backpacks Adafruit LED

it AR AT ol Once clicking Install, you’ll be met with a prompt to install dependencies. Maker sure
(151 v " to hit Install All for this one again. L

~ ***If you only see an option to remove the library, that means it’s already installed
«« = and you can skip this step.

> <Ada
CK (13)
MISO (12) Install library dependencies X
0ST (11)
 CS (10) The library Adafruit LED Backpack Library:1.5.1 needs some other dependencies cumrently not installed
- Adafruit BuslO
- Adafruit GFX Library
- Adafruit GPS Library

- Adafruit ILI9341

Adafruit_BMP28@ bmp(BMP_CS, BMP_MO =
- - - - Adafruit SH110X

38 - Adafruit STMPE610
setup() { - Adafruit TSC2007
S gin(9600); - Adafruit TouchScreen

S - RTClib i

Serial Monitor % Ouiput _SD ¥ 0=
- New Line v|[9600bava ~

,,,,,,, e ——————— E— Would you like to install all the missing dependencies?

19:36:07.174 -> Pressure = 101981.96 Pa

19:36:07.207 -> Approx altitude = -54.55 1 (INSTALL WITHOUT DEPENDENCIES) ()

19:36:07.247 —>

19:36:09.167 -> Temperature = 22.46 *C
19:36:09.167 -> Pressure = 101961.96 Pa
19:36:09.199 —> Approx altitude = -54.55 m
19:36:09.233 ->

19:36:11.178 -> Temperature = 22.46 *C
19:36:11.211 —> Pressure = 1019B81.78 Pa
19:36:11.211 -> Approx altitude = -54.54 m
19:36:11.245 >

Ln 30, Col 1 Arduino Mega or Mega 2560 on COM10 23 8

421 PM
/2024

LED Backpack Counter

Testing the LED Backpack Counter

1. Now, let us connect the LED Backpack counter to the breadboard as you did with the sensor.

2. To connect the LED Backpack Counter to the Arduino, the jumper wire must be placed into the breadboard slot next
to the sensor’s pin.

3. Connect a jumper wire to each of the pins on the counter. Once your jumper wires are connected to the LED
Backpack Counter, make the following connections to the Arduino:

Connections

| Arduino | LED Counter |
(Power) 5V +
(Power) GND -
(Comm) SDA D
(Comm) SCL C

*** In parentheses are the sections of the Arduino in which those pins are located.
*** The LED won’t light up until you run the code.

| mmkslw
P
ey
 mamww
e
T
EE S S e
R an
Essan
e
e
Easaw
samae
Eaawe
ase e
e |
;Kllllh
e
o
el
e
e e
S
Celw e e -
e e
R
e
-
llKll,

BT

(e e n-.::“v 7
EEREN KEXEE mxE N l!l!l
EENEKENE EMEXXE NEEKEE KEEKKE

B
-
-
-
-
-
-
-
-

. =
-
-
-
-
-
-
-
-
-

-
-
-

EEEEE

S
Q
)
-
-
O
O
e
O
©
Q.
o
@)
©
8]
o
L
-

m

c

_ nr.. >
Q

o

= g 5

e X+ . O o <

o o .20

) 28 & +

> C = c

o) o o

% B >

w.) O w

Mm c AN N —

C o < c -

o o o Z & & 2

> (@) — O <« > 9

> [T T O

© — ‘c

n”l < mw o m m m c

“u W = mU m m c ¥

e QL . S = S

o & b 5o

Q ~

SH *W,

B3

‘ { Arduino Mega or Meg... ~ N

SKETCHBOOK bmp280testino s
= o

lude <Wire.h>

Eng Testing the LED Backpack Counter

1. Click on the sketchbook icon in the left hand panel and
click on the New Sketch button at the bottom. This will
open up a new window for you to run code in.

Adafruit_BMP28@ bmp(BMP_CS, BMP_MOSI, BMP_MISC, BMP_SCK);

setup() {
Serial.begin(9660);
(!Serial) delay(1ee);
println(F("BMP288 test"™
status;

~

status = bmp.
if (!status) {
Serial.println(F("Co4ld not find a valid BMP28@ sensor, check wiring or "
“try a different address!™));
("SensorID was: : bmp.sensorID(),16);
nt(” ID of ©xFF probably means a bad address, a BMP 1806 or BMP 085\n");
ID of @x56-8x58 represents a BMP 28@,\n");
ID of ©x60 represents a BME 280.\n");
TN nf Ax61 renresents a AMF GRA.\n"):
Serial Monitor Oritput =6
Milcauy 1nstalicu MUGII ULL DUSLUREL.1U.Z
Already ins?alled Adafruit STMPE61€@1.1.6
Already iristalled Adafruit TouchScreen@l.1.5

egin();

Already/installed Adafruit 75C2007@1-1-2

Already installed WaveH(C@1.0.5

Alpeady installed Adafruit GFX Library@i.11.11
Klready installed Adafruit GPS Library@l.7.5
Already installed Adafruit ILI9341@1.6.1
Already installed Adafruit SH110X@2.1.11
Downloading Adafruit LED Backpack Library@1.5.1
Adafruit LED Backpack Library@l.5.1

Installing Adafruit LED Backpack Library@1.5.1

NEW SKETCH Installed Adafruit LED Backpack Library@l.5.1

Ln48, Col3 Arduino Mega or Mega 2560 on COM10 34 B3

457 PM
~ ()
I“—’? B 10/31/2024

& sketch_oct31a | Arduino IDE 2.3.3

File Edit Sketch Tools Help

{ Arduino Mega or Meg... ~ N

sketch_oct31a.ino
1 setup() {

Testing the LED Backpack Counter

1. Delete the default code that appears in the new
window.
2. Copy and paste following code in its place:

#include <Wire.h>
#include <TimerOne.h>
#include <Adafruit_LEDBackpack.h>
Adafruit_7segment matrix = Adafruit 7segment();
timerCount = 0;
secondElapsed() {
timerCount++;
matrix.print(timerCount);
}

setup() {
matrix.begin(0x70);
Timerl.initialize(1000000);

Tamand ESE S Tt A +/ nAE] n AN .
rLnmcT r.accacirarccr i UPL\DCLUHUELG}JDCU})

i

loop() {
matrix.writeDisplay();

B

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q

A E? » 5:03 PM

10/31/2024

& sketch_oct31a | Arduino IDE 2.3.3
File Edit Sketch Tools Help

‘ { Arduino Mega or Meg... ~ N

sketch_oct31a.ino

je <Wire.h>
je <TimerOne.h>
e <Adafruit_LEDBackpack.h>
Adafruit_7segment matrix = Adafruit_7segment();
timerCount = 8;

——— Testing the LED BaCkpaCk Counter

timerCount:
matrix.print(timerCount);

}
il . 1. Once pasted in, click on the arrow in the header to run
Timerl. “K:L?(‘SE‘((")I‘IdElapSEd); r the COde.
Vet 1000 2. Asaresult, the LED should light up and begin counting. I
matrix.writeDisplay();

v 3. Once it’s successful, move on to the next slide and let I
us begin on the next component.

***No output will be displayed in the serial monitor. We're
only trying to make sure the LED Counter is working.

Serial Monitor x Output ¥y 0O =

Ln17,Col2 Arduino Mega or Mega 2560 on COM10 22 8

530 PM
~ (<)
E? B 10/31/2024

Module V

Arduino Timer Testing
w/ Arduino Generated Pulse

Key Concepts

Arduino Components

Let’s take a step back now and go over two components of the Arduino board and critical concepts that you'll
need to grasp before moving on. Those are the:

16 MHz Crystal Oscillator 16-Bit Timer

" ." =

/ 1

nnnnn

Key Concepts

16 MHz Frequency Crystal Oscillator

The ATmega2560 is operating with a 16MHz (megahertz) frequency clock oscillator, meaning the microcontroller can
perform up to 16 million operations per second, or 16 million clock cycles each second. A clock cycle, or “tick”, is the basic
unit of time for the microcontroller. The frequency of the oscillator determines the time period for each tick.

Theoretical Timer Tick Period

1 second
16,000,000 ticks

* This formula shows us how we arrive at the theoretical time it takes for the Arduino clock
to “tick” once. It doesn’t tick once a second like a normal clock, it would, theoretically, tick
once every 62.5 nanoseconds.

= 62.5 nanoseconds per tick

***However, due to temperature fluctuations in the environment, aging effects of the crystal, and programming with
interrupts in the code, the Timer Tick Period will not match what we would expect as outlined above and so tests are
needed to determine the True Timer Tick Period, or at least a more accurate one.

Key Concepts

Timers w/ Binary Systems

The timer on board the ATMega 2560 is using a 16-bit counter which utilizes a binary number system The binary
number system is a method of representing numbers using only two symbols: 0 and 1. It is the foundation of all modern
computing systems because it aligns well with digital electronics, where circuits have two states: ON (1) and OFF (0).

---mﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Value 32768 16,384 8,192 4096 2,048 1024 512 256 128 64 32 16 8
SR :1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number

Binary to Decimal
1111111111111111 =65,535

A 16-bit counter with all bits set to 1 has a maximum value of 65,535. This is important because, with a 16-bit binary
system, the counter can only count up to this number. However, our clock oscillator operates at 16,000,000 ticks per
second, far exceeding the counter's capacity within a single cycle.

Key Concepts

Decimal Numbering System

The Arduino uses a binary number system but as a comparison, let’s look at how we use numbers using the decimal

number system. In the decimal number system, each digit in a number represents a different place value depending on
its position. Let's break down the number 9,432.

9,432 The rightmost digit (2) is in the ones place. This means it represents:

ric Lo Lo o o SRR

The next digit (3) is in the tens place. This means it represents:
Value 1,000 100 10 3x10'=3x10=30

Digit 9 4 3 2 The next digit (4) is in the hundreds place. This means it represents:
4 x 10%=4 x 100 = 400

The leftmost digit (9) is in the thousands place. This means it represents:
9 x 103=9 x 1000 = 9,000

When we add up the values, we get the total for the number it represents:

9,000 +400+30+2=9,432

Key Concepts

Binary Numbering Systems

The binary system works much the same way as the decimal numbering system only that the values of the positions are
no longer powers of 10, but powers of 2. A limitation for the binary system is that it only can use two digits, 0 and 1 for
each position. This means that even though this number may look like 1,011 from the decimal system it is not equal in
value. Note also, binary numbers do not use comma separators.

1011 The rightmost digit (1) is in the ones place. This means it represents:

1x20=1x1=1
Mnnnn The next digit (1) is in the twos place. This means it represents:
Value 8 4 2 1 1x21=1x2=2
Digit 1 0 1 1 The next digit (0) is in the fours place. This means it represents:
0x22=0%x4=0
The leftmost digit (1) is in the eights place. This means it represents:
1x23=1x8=8

When we add up the values, we get the total for the number it represents:

8+0+2+1=11 1011 =11

Key Concepts

Working Around Limitations Using Code

To address the limitation of only being able to count up to 65,535, we wrote code to keep track of how many times the
counter reaches its maximum value of 65,535. When the counter hits this limit, it resets to 0 and starts counting again.

Each time this happens, we increment a variable in the code called "Overflows". For example, two overflows would
correspond to a total count of 65,536 x 2.

***Notice, we multiply the Overflows value by 65,536. This is because the timer treats the value 0 as a tick.

65,536 ticks

To watch the animation, click the ‘
Animations Tab from the ribbon

above, and click Preview to see m

how the timer affects the

Overflows variable. Tl mer m

& sketch_oct30b | Arduino IDE 2.3.3

’ { Arduino Mega or Meg... ~ N o

i . ° ° ° ° ° °

tdentifying True Arduino Timer Tick Period
Now we will be testing for the True Arduino Timer Tick Period. To do this, disconnect all of your previous jumper
wires,.greate a new sketch, and paste the code below.
8 overflowCount = 0;
totalTicks = ©;
setup() {
pinMode(13, OUTPUT);
Serial.begin(115200);
noInterrupts();
TCCR1A = 0;
TCCR1B = 0;
TCNT1 = 0;
TCCR1B |= (1 << CS10);
TIMSK1 |= (1 << TOIE1);
interrupts();
¥
ISR(TIMERL_OVF_vect) {
overflowCount++;
}
loop() {
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);

Serial Mol ¥ 0 =
noInterrupts(); ﬁ
totalTicks = overflowCount * 65536UL + TCNT1; I
overflowCount = 0;

TCNT1 = ©;

interrupts();

Serial.println(totalTicks);
¥

Ln8, Col1 Arduino Mega or Mega 2560 on COM10 Q B8

510 PM
~)
C‘? & 10/30/2024

&) SelfGen_Pulse_TickCount | Arduino IDE 2.3.4
File Edit Sketch Tools Help

{ Arduino Mega or Meg... ~ N

dentlfylng “True:Arduino Timer Tick Period
Run.the, qoqze and.you should.see results appearing in your Serial monitor similar to mine. The numbers will be

dlfferen“c as it ‘depends on your hardware and conditions mentioned before. Now that we know the code is working,
wefmeg to extract the dataforanalysis.

TCNT1 = @;
TCCR1B |= (1 << C518);

In tﬂséi next module, 1 willintroduce the third party software that will help us do just that. I
ISR(TIMERL_OVF_vect) [)
- } overflowCount++;
op() {
HIGH)
LOW) ;

noInterrupts();
tntalTl(ks = overflowCount * 65535UL + TCNT1;
overflowCount = @;
TCNT1 = 8;

Serial Monitor X ¥ 0=

17:00:28.878 —> 16006592
17:00:29.895 -> 16006548
17:00:30.905 -> 16006580
17:00:31.906 —> 16006590
17:00:32.904 -> 16006484
17:00:33.871 -> 16006474
17:00:34.911 -> 16006519
17:00:35.873 -> 16006518
17:00:36.903 -> 16006470
17:00:37.903 -> 16006479

Ln20,Col2 Arduino Mega or Mega 2560 on COM10 22 8

v : Searc) & =) / ce s B B A gy 20

12/12/2024

Module VI

Setting Up Putty for Data Extraction

Putty

Putty Settings

Putty is an application that captures information sent to your computer from the Arduino by tapping into the serial port.
With that said, you CANNOT have the serial monitor in the Arduino IDE open when running Putty as it will create a conflict

and not run.
1%t Step: Find the icon on your desktop to open 2" Step: In the Session menu, change the
up the Putty application. If not on your desktop, connection type to serial.
type Putty into your search bar to locate it in =
PuTTY Configuration ? x
you r PC- Category:
Basic options for your PuTTY session
| Tarrl;-:ga\gmg Specfy the destination you want to connect to
Keyboard Host Name (or IP address) Port
Eilures Connection type:
H wmii:-emm OssH a\ O Other: Telnet
Behaviour Load, save or delete a stored session
. ;Z:j‘at'm Saved Sessions
Colour:"
=J- Connection Default Settings Load
Data
Proxy Save
et Delete
Teinet
?Jggup Close window on exit
O Aways (O Never © Only on clean exit
About Help [Open I Cancel

Putty Settings - -

& Medica... tutorials

3'd Step: Make sure the Serial Line in Putty is set to the
same port and baud rate the Arduino is using to
communicate.

) (Arduino Mega or Mega 2560) =

Specify the destination you want to connect to

Serial line Speed
9600

(O Other: Telnet

Load, save or delete a stored session

Saved Sessions

Default Settings Load
Save
Delete

ogi
SUPDUP Close window on exit:
(O Aways (O Never © Onlyon clean exit

Open Cancel

*To do this, navigate to Tools > Port, and identify which
~OM fine is bei R ber-t} I |
should match baud rate specified in the code you use
while using Putty. E

Recycle Bin

Ln1,Col 1 Arduino Mega or Mega 2560 on COM10 03

6:28 PM
~)
I"‘:? B 12/10/2024

fernier

2023 JAWS 2023 ZoomText

8 o 5

Arduino IDE Arduino Web

nq " nﬁ

Putty Settings

4th Step: Navigate to the Serial e
menu item in the category tree and

configure your settings as such. The,
Serial Line and Speed you set are
dependent on your Arduino IDE
configuration. The speed should
match the baud rate from the code :
and the Serial Line should match
the port you are using. The rest of
the options should be identical to
mine.

r)

Options controlling local seral lines
Select a serial lins
Serial line to connect to COM10
Configure the serial line
Speed (baud) 9600
Data bits
Stop bits 1
Parity None

XON/XOFF

Engineering Lily Carter

N\ L
& b 2

Fusion 2023 JAWS2023 ZoomText
2023

8 o 5

Arduino IDE Arduino Web PuTTY

nq " nﬁ

Google FSReader3.0 Speccy
Chrome

Arduinos -
Sam Resto

Vernier
Graphic...

Configuring Putty to Save Data

5th Step: Navigate to the Logging
menu item in the category tree and
configure your settings to match
that shown here.

- Select All session output

- Rename your file however you
like in the Log file name space
given.

%

@ PuTTY Configuration

Categor

Translation
#- Selection

SUPDUP

Options controling session logging
Session logging
(e () Printable output
ssion output () SSH packets
() SSH packets and raw data
Log file name

B

(Log file name can contain &Y, &M, 3D for date, &T for
time, &H for host name, and &P for port number)

8 Include header

Options specfic to SSH packet logging
Omit known password fields
() Omit session data

Engineering Lily Carter Gabe
& Medica... tutorials

Recycle Bin

6:46 PM
~ E? < 12/10/2024

Fusion 2023

a8
Arduino IDE

a ,
Google
Chrome

Arduinos -
Sam Resto

JAWS 2023

°

Arduino Web

a”

FSReader 3,0

I\

ZoomText Vernier
2023 Graphic...

|
@ Select session log file name
> ThisPC > Desktop » Arduinos - Sam Resto >

Organize v New folder

v [ThisPC
Putty Outputs
&l Desktop

E3:| Arduino Spreadsheet
4 Documents
B Arduino Tutorial - (Version Sam)
«+ Downloads
P Music
PN Pictures
i Videos

£5 Windows (C:)

‘@l Network

File name: | getyourhandsoffmyputty

Save as type: All Files (*.%)

~ Hide Folders Cancel

Configuring Putty to Save Data

0 €p: YOU Can se

"

Category
Session
Logging
=} Terminal
Bell
Features

Window

Engineering
& Medica...

Lily Carter

Options controlling session logging

Session logging
(0 None

© All session output

() Printable output
() SSH packets

¥ < packets and raw data
Log file name

Behaviour
Translation
+- Selection
Colours
Connection
Data
Proxy
SSH
Serial
Telnet
Rlogin
SUPDUP

getyourhar ity
(Log file name can contain &Y, &M, 4D for date, &T for
time, &H for host name, and &P for port number)
What to do ff the log file already exists
Always overwrite it
() Aways append to the end of it
© Ask the user every time

Flush log file frequently
8 Include header
Options specffic to SSH packet logging

Omit known password fields
() Omit session data

Drowse and selecting

any location you’d like, a folder, the desktop, etc. | suggest creating a folder for your own
research and keeping your data organized as | did for myself here.

A QD

Gabe
tutorials

Recycle Bin

6:51 PM
12/10/2024

A Z N -

Fusion 2023 JAWS 2023 ZoomText Vernier Engineering Lily Carter Gabe
2023 Graphic... & Medica... tutorials

‘00 p=
a]
Arduine IDE Arduino Web R Select session log file name

> ThisPC > Desktop » Arduinos - Sam Resto >

'q B / Organize v New folder

Google FSReader 3.0
Chrome v @@ This PC
Putty Outputs

&l Desktop Category
E3:| Arduino Spreadsheet 1 15:14 PM M t el W ¥ Session Options controlling session logging

| Documents Logging
Arduinos - ;) Arduino Tutorial - (Version Sam) 4 PM licrosoft P 2 k =} Terminal Session logging
Sam Resto + Downloads) Keyboard O None O Printable output
Bel © All session output () S5H packets
Features (O $5H packets and raw data
Window Log fle name

P Music

PN Pictures

'B £ getyourhar ftty | Browse... |
ienaviour ST
i vider T (| R e e
s elacion What to do ff the log file already exists

Always overwrite it
() Aways append to the end of it
© Ask the user every time
Flush log file frequently
8 Include header

£5 Windows (C:) Colours

Connection
‘@ Network Data
Proxy
File name: | getyourhandsoffmyputty #-SSH
Serial
Save as type: All Files (*.%) Telnet
Rlogin
SUPDUP

Options specffic to SSH packet logging
Omit known password fields

~ Hide Folders [__) Omit session data

Running the Program

7th Step: Now that PUTTY is set up and ready to capture information from the IDE, the next step

would be to click Open to start the connection. However, we won't do that just yet. Before

PUuTTY can receive data from the Arduino, you need to close the Serial Monitor in the Arduino

IDE. This is because both the Serial Monitor and PuTTY use the same communication ports, E

Recycle Bin

which can create a conflict if both are open at the same time.

it B O s LO-B={ OBC€LS AU

12/10/2024

ook Heln . . .

= Kol Engineering Lily Carter Gabe
| q’ ArdumoMegaorMeg... v I ’A o & Medica... tutorials

SelfGen_Pulse_TickCount.ino

- Running the Program

TCNT1 = 0

gc&“i‘;;St%;)(ou should see results come up in Putty as seen here. We will let the code
“run‘for 1000 seconds which translates to 1000 datapoints (approx. 17 minutes) so we
«cgn-analyze a sizeable sample set.

overflowCount++;
2}

-

loop() {

digitalWrite(13, HIGH);
delay(se@);
digitalWrite(13, LOW);
delay(500);

noInterrupts(); 2 inte) 1
totalTicks = overflowCount * 65536UL + TCNT1;
overflowCount = 8; >

TCNT1 = ©;

interrupts();

Serial.println(totalTicks);

Output

]

&

Sketch uses 3038 bytes (1%) of program storage space. Maximum is 253952 bytes.
Global variables use 196 bytes (2%) of dynamic memory, leaving 7996 bytes for local variables. Maximum is 8192 bytes

vl

Recycle Bin

Ln 20, Col 2 Arduino Mega or Mega 2560 on COM10 (22 B

511 PM
~ I"‘:? < 12/12/2024

I ‘ﬁ_ ol Engineering Lily Carter Gabe
& Medica... tutorials

| ¥ Arduino Mega or Meg... ~

SelfGen_Pulse_TickCount.ino

%Vmg the Data

TCNTl =i 6

Step:: Once done; close the Putty window. It will automatically save the logged
“"déi‘t% wherever you set the file destination to in a previous slide.

TSR(TIMER1_OVF_vect) {

-

overflowCount++;
2}

loop() {

digitalWrite(13, HIGH);
delay(se@);
digitalWrite(13, LOW);
delay(500); W f) s

noInterrupts();

totalTicks = overflowCount * 65536UL + TCNT1;
overflowCount = ©;
TCNT1 = ©;
interrupts();

Serial.println(totalTicks);

}

Output =58
Sketch uses 3038 bytes (1%) of program storage space. Maximum is 253952 bytes. i!
Global variables use 196 bytes (2%) of dynamic memory, leaving 7996 bytes for local variables. Maximum is 8192 bytes

Recycle Bin

Ln 20, Col 2 Arduino Mega or Mega 2560 on COM10 (22 B

511 PM

b E Q- ﬂ < / - A QD 0

Module VI

Simple Data Analysis using Excel

Module VI

Testing Arduino Timer Against Signals
Generated by the GPS Breakout v.3 PPS Pin

Ultimate GPS Breakout v.3

Testing the GPS Module

1. Now, let us connect the GPS module to the breadboard as you did with the LED backpack.

2. To connect the GPS module to the Arduino, the jumper wire must be placed into the breadboard slot next to the
sensor’s pin.

3. Connect jumper wires to make the following connections:

Connections

(Power) 5V VIN
(Power) GND GND
(PWM) 2 PPS

*** In parentheses are the sections of the Arduino in which those pins are located.

O

PA1616S
0067400

pper

mxmmE mEgpme Gl

EENEARE RAKKK

-
-
-
-
-
-
-
-
-
-
-
=
=
-
-
-
-
=

"

T o A

SR

AEEE REEEE AKAEN SEEAN KEAAR
oA A EAN NAXXK KEKEKKN AEKER

meees wemEm EENERE EEHE AR
_ A ﬁh!!!. WM AN ENEEN MW

FEEEE R

SR EREREE RN
EEEEERERERE N

PR R]

™
>
)
-
O
<
(4]
)
.
an)
(7))
a1
O
Q
)
(]
£
=
-

)
= [
s E
S 2z 2 ¢
o n Mm > O o
S C N
o o} O
R
a3
+ c (o)
()] c UV =
~

= SHs 2=

—_ -
o v -
> s ¢ =
© g 8 &
< = a
W" —
=2

Here

Setup

Ultimate GPS Breakout v.3

Testing the GPS Module

1.

Once you connect the jumper wires to power the module, the FIX light will start blinking on and off. This indicates
that the module hasn’t acquired your location yet.

To resolve this, connect the GPS cables (hanging down over each workstation) to the port circled here.

After connecting, allow a few minutes for the module to establish your position. The process is complete when the
blinking slows down to about once every fifteen seconds.

Ultimate GPS -

Breakout v3";

& sketch_oct31a | Arduino IDE 2.3.3
File Edit Sketch Tools Help

‘ Y Arduino Mega or Meg... ~

D SKETCHBOOK sketch_oct31a.ino

o le <Wire.h>

le <TimerOne.h>

le <Adafruit_LEDBackpack.h>

Adafruit_7segment matrix = Adafruit_7segme

segn

timerCount = 8;
secondelapsed() {
timerCount++;
matrix.print(timerCount);

lize(1000000);

iteDisplay();

Serial Monitor x

terrupt(secondElapsed);

nt();

Testing the GPS Module

1. Click on the sketchbook icon in the left hand panel and
click.on’the 'New Sketch button at the bottom. This will

open up a new window for you to run code

in.

NEW SKETCH

Ln 18, Col 1 Arduino Mega or Mega 2560 on COM10 22 8

A Qe

2:09 PM
11/1/2024

{ Arduino Mega or Meg... ~ o™

sketch_oct31a.ino
‘L setup() {

0 e o e Testing the GPS Module

#define PPS_PIN 2 // Th(e)viri‘zlz‘i;r\i ;‘;[taching to the PPS signal from the GPS unit 1. Delete the default Code that appears in the new

overflowsSincePPS = 0;
lastTimerl = 0; .
recentPPS = false; Wlndow'
ISR(TIMER1_OVF_vect) // This is called whenever Timer/Counter 1 overflows . . .
: 2. Copy and paste following code in its place:
overflows++; // Increases the "overflows" variable by 1

}

setup() {
Serial.begin(115200);
delay(1000);
pinMode (PPS_PIN, INPUT);
TCCR1A = @; // Sets entire TCCR1A--Timerl Control Register A--to ©
TCCR1B = bit(CS10); // Turns on the Timerl clock and sets it to increment every clock cycle
TCCR1C = @; // Timer 1 Control Register C set to @
TCNT1 = @; // Initialize timer/counter 1's value to @
TIMSK1 = bit(TOIE1l); // Timer/Counterl's interrupt mask register; TOIE1l is the timer/Counterl overflow interrupt enable
Serial.println("Starting up...");
attachInterrupt(digitalPinToInterrupt(PPS_PIN), PPSHandler, RISING);

PPSHandler() { // Since this is an interrupt we should do as little as possible here. Serial writes take a lot of clock cycles, so we save that for the loop.
lastTimerl = TCNT1;
TCNT1 = @; // Resets Timerl Count
overflowsSincePPS = overflows;
overflows = 0;
recentPPS = true;

loop(){
if (recentPPS) {
noInterrupts();
overflowsTemp = overflowsSincePPS;
lastTimerTemp = lastTimerl;
interrupts();
Serial.print("Overflow:");
Serial.println(overflowsTemp);
Serial.print("Timer1:");
Serial.println(lastTimerTemp);
Serial.print(“ClockCycles:");
Serial.println(overflowsTemp << 16 | lastTimerTemp); // Equivalent to overflowsTemp * 2716 + lastTimerTemp
recentPPS = false;
}
}

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q

& sketch_novia| Arduino IDE 2.3.3

File

{ Arduino Mega or Meg... ~
- Z Reminder: You can use the button in the top right to pull up the serial monitor.

sketch_novia.ino

overflows = 8;

s Testing the GPS Module

recentPPS = false;
ISR(TIMERL_OVF_vect)

{ Note that the baud rate is defined in the code with the line highlighted here.

overflows++;

The baud rate selected in the serial monitor must match the baud rate defined in

12 3
Pilee(prs PIn, THAL): _ the code, otherwise your results will be off.
TCCR1B = -’1
TCCR1C = ©; a . .
HeEe b So open up the serial monitor again, and make sure you have 115200 baud

TIMSK1 . BLS% :
Seris ;D’-up.“"); SEleCtEd-

nterrupt(PPS_PIN), PPSHandler, RISING);

PPSHandler() {
lastTimerl = TCNT1;
TCNTL = ©;
overflowsSincePPS = overflows;
overflows = @;
recentPPS = true;

1oop(){
if (recentPPS) {

Serial Monitor x

Ln 12, Col 14 Arduino Mega or Mega 2560 on COM10 Q B8

2146 PM
~)
l;? P 11/1/2024

& sketch_novia| Arduino IDE 2.3.3

Y Arduino Mega or Meg... ~ Ao
- Z Reminder: You can use the button in the top right to pull up the serial monitor.

sketch_novia.ino

overflows = 8;

s Testing the GPS Module

recentPPS = false;
ISR(TIMERL_OVF_vect)

€ Run the code using the arrow in the top left of the IDE. Your results should appear
overtiows++;
} o as it does below, listing the following every second:
ol il Sl 1. Overflow Count
|Z"‘!-’-.:r-:(PPS:PIN, INPUT); 2 Timer 1 Count
TCCR1A = ©; \
TCCRIB = bit(C510); - 3.~ Total Clock Cycles
TCCR1C = 9; . . .
T 89 ' : __ 4. The number to the left of the arrow in your results is a timestamp taken from
Ser o)
att nterrupt(PPS_PIN), PPSHandler, RISING); the computer.
}
ppstiandler() { - of ! K
L=iaent O ***The GPS PPS pin is designed to emit a pulse once every second.
nverflawsgincePPS = overflows;
overflows = @;
recentPPS = true;
}
loop(){
f (recentPPS) {

Serial Monitor x utput ¥y 0=
"

J New Line - H 115200 baud

14:50:32.163 —> ClockCycles:1599820%
14:50:33.192 —> Overflow:244
14:50:33.192 —> Timerl:7421
14:50:33.192 -> ClockCycles:15998205
14:50:34.185 —> Overflow:244
14:50:34.185 -> Timerl:7420
14:50:34.185 -> ClockCycles:15996204
14:50:35.187 —> Overflow:244
14:50:35.187 -> Timerl:7424
14:50:35.187 -> ClockCycles:15998208
14:50:36.170 —> Overflow:244
14:50:36.171 -> Timerl:7424
14:50236.171 -> ClockCycles:15998ZuB

Ln 12, Col 14 Arduino Mega or Mega 2560 on COM10 22 8

250 PM
~)
l;? P 11/1/2024

Key Concepts

Applying What We Learned

From the results displayed in the Serial Monitor, we can observe the time elapsed between each signal received from
the GPS PPS pin. This elapsed time is represented by two key values: the Overflow value and the Timerl value. The
Overflow value reflects the number of complete timer overflows that have occurred, while the Timerl value indicates
the leftover timer ticks that have not yet accumulated enough to increment the Overflow counter. Together, these
values provide a precise measurement of the time interval between signals.

" Serial Monktor Using my results, you can see that 244 Overflows plus 7420 individual ticks
‘ occurred in between that signal and the last. Knowing these values, we
can calculate the elapsed time by doing the following:

(244 x 65,536) + 7420 = 15,998,204 ticks

You may have noticed that this number matches the ClockCycles value
from the same timestamp. In the code, we have programmed the Arduino
to perform the necessary calculation, allowing us to see the total number
of ticks between pulses from the PPS pin.

Module VI

Arduino Timer Testing
w/ Pulse Generator

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope

For this part we will be using the Pulse Generator and Oscilloscope in tandem with the Arduino board to test out some
more code.

Before we can do this, you need to make sure your equipment is set up properly.

4 . o
Il L
.. ,ulb
7 8
4
i |
| sine Square Ramp Pulse Posse Arh
e

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope

The first connection we’ll need to secure is the BNC cable to the Oscilloscope. Connect the BNC Cable from CH1
(Channel 1) on the Pulse Generator to Channel 1 on the Oscilloscope.

Oscilloscope
Pulse Generator P

p - =,
f ix 22(’m""
RIGOL 281922, . . o woe) (o : —
od Recall i n B Tiig M Pig 0,000 TRIGGER
Lt

L

(=)
D 000 e =
> i
Sine s$ @ Pulse ‘ﬂ:]@@ € Trg
q OISR € &
-

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope

The other end of the BNC Cable should be equipped with an adaptor that has two slots for jumper wires so that you can
attach them to the Arduino board. The adaptor slots for the jumper wires are marked with a positive and negative sign.
Use this to make the connections in the table below.

Arduino Board

Oscilloscope
Tektronix TDS2022(A3 . . (_,
i =

L

]

Connections

2

r
(i

= =
=)=

—

0

o' BVNC Cable | Arduino
- + 2 (PWM)
' - GND (PWM)

*** |n parentheses are the sections of the
Arduino in which those pins are located.

Pulse Generator & Oscilloscope

Setup

Here is what your setup should look like!

Connections

BNC Cable | _Arduino __

+ 2 (PWM)
- GND (PWM)

BAEEAR EEEER BREEES EEERRA EEERE =R

AAAAR AABRERBR PEEREAR BRARAR rERRnnnr AREAR AN

Pulse Generator & Oscilloscope

Setting Up The Pulse Generator

Now lets adjust the settings on the Pulse Generator.

r— A —
Ld LeTo) LAk i— LTI \
{ e [Sine D Figh : u: 3 Output Impedance
) ﬂ vF 'pgpt’goq.'ng () [2 M State <*— Sine D ;Higtm Z IS Current Channel Sign
mpl) Offsel | Phase |AligPha Chicaumr
7 o Waveform —{ A . 000 , 00 0 ! 0 k Hz——> Parameter Display
o @ @ s a Menu Ampl | Otffset | Phase [AligPha] b

Turning on the pulse generator, the display will light up and you’ll see a screen similar to the one above. Ensure that the
Current Channel Sign is set to CH1. If set to CH2, press the CH1/CH2 button at the bottom of the panel to toggle
between the two.

Pulse Generator & Oscilloscope

Setting Up The Pulse Generator

Change the type of waveform generated to a pulse. Pulses are ideal for measuring how systems respond to quick,
temporary changes. You'll notice the waveform image and state shown in the display will change as well.

Pulse Generator & Oscilloscope

Adjusting the Frequency

The frequency determines how many pulses per second the pulse generator emits. So at 500Hz, it’ll send out 500 pulses

per second.
| Frequency

, RIGOL P51022 o Stancel 2MHz

!

/N /N,
N

Low frequency signal

AN NN
VAAVAVAAVAL

High frequency signal

DO ERE

Pressing the blue button under the Freq (Frequency) menu item will toggle the screen from Period to Frequency and
vice-versa. If it is already on Frequency, adjust the value to 500Hz by entering 500 using the number keypad outlined in
red above and finalizing your entry by selecting the appropriate scale from the new menu that appears underneath your
input. In our case, we want to choose Hz (hertz).

Pulse Generator & Oscilloscope

Adjusting the Period

The period is how long it takes for a pulse to complete one full cycle.
y 7.7_-'&;;"'\
/ RIGOL 5922 oo o0

L
)

R e Tor= JonCre) Do [air g
CLIrrxyl

=y i wre | Ra P n ab | o
» HoEiEE®
—

Toggle the menu into Period mode, by hitting the blue button underneath the Freq menu item and enter the desired

time. For our purposes, let us enter 2ms by entering 2 with the number keypad and finalize it by pressing the blue
button underneath the ms (milliseconds) menu item.

***| show you how to adjust the period so that you know how, but the period is automatically set once you enter the
frequency as the two measures are related. A 500Hz frequency waveform will always have a 2ms period.

Pulse Generator & Oscilloscope

Adjusting the Duty Cycle

The Duty Cycle refers to the percentage of the waveform that is in the ON (high voltage) state.

N
RIGOL DG1022 . 2Channe 20MH,
—

Examples of Various Duty Cycles

L *As seen on the oscilloscope.
Press the button below DtyCyc (Duty Cycle) and it will 75% duty cycle
display its current setting. Enter 10 using the number _ |_ |_ |_
keypad and finalize your input by pressing the button
c . . 25% duty cycle
below the percentage sign in the newly displayed —| —| —|
menu. —

**Note that pressing the DtyCyc button twice will toggle it between DtyCyc and Width. So, if you only see Width on
your screen, just press the button below the menu option to change it to DtyCyc.

Pulse Generator & Oscilloscope

Adjusting the High Level

The High Level refers to the amplitude (height) of the waveform.

P

REIGOIL R3022) weorni Shnss

..........

'High Level

Breakdown of a Pulse Waveform

ON OFF Individual Pulses

+A — - / J
% Pulse-train
Press the button below HilLev (High Level) and it will display its g‘
current setting. Enter 5 using the number keypad and finalize your ¢
input by pressing the button below the appropriate scale in the One Per[od s

newly displayed menu. For this exercise, select V (volts).

**Note that pressing the HilLev option twice will toggle it between Ampl and Hilev. So, if you only see Ampl on your
screen, just press the button below the menu option to change it to HilLev.

Pulse Generator & Oscilloscope

Adjusting the Low Level

The Low Level refers to the baseline or lowest voltage point of the waveform.

——,
RIGOL 251022, oo 2Shanner 20wz

\

Press the button below LoLev (Low Level) and it will display its current setting. Enter O using the number keypad and
finalize your input by pressing the button below the appropriate scale in the newly displayed menu. For this exercise,

select V (volts).

**Note that pressing the LoLev option twice will toggle it between Offset and LoLev. So, if you only see Offset on your
screen, just press the button below the menu option to change it to LoLev.

Pulse Generator & Oscilloscope

Sending Out the Signal

{ RIGOL PS1022 ..o 2Shanne

g

***|f your screen looks different than the one shown here,
try cycling through the various view modes by pressing the
View button until it’s similar to mine.

Near the BNC cable connected to CH1, there is a button labeled Output. It must be lit up in order for its signal to be sent
out to the oscilloscope. If it is not lit up, press the button and you should see the waveform it is generating show up on

the display of your oscilloscope.

Pulse Generator & Oscilloscope

Setting Up The Oscilloscope

Trigger Level

Tektronix TDS 2022C o o MRa ServRecsn prr——
))

o o -
......
) p— — A

GANLBLELE
(@)F
)
0 0N

\ i)
Vertical Position Horizontal Position

Trigger Level

Before we can verify the equipment reading, let us run through some settings to make sure the oscilloscope is doing
what we want it to. A good place to start is to adjust the position of all the cursors. The horizontal, vertical and trigger
level cursor. Adjust the knobs so that the arrows are set to 0 at all points which will align each one with the x or y axis.
***The vertical cursors position will appear on the screen as you turn the knob.

Pulse Generator & Oscilloscope

Current Merlu Displayed

Setting Up The Oscilloscope

Tektronix TDS2022C = = F (_‘ (_‘ (_\ C ﬁ i
T R [e e (L
Ofmimim m .
® S
(o
A
oD = 2.
o L 5
A Se (
-
- Tl Ty
® & &
= { @ @ &
. J \ -
Menu Cycle Buttons

Channel 1 Menu Button

Press the Channel 1 button on your oscilloscope. This will display the Channel Menu on your screen as seen above.
Make sure your settings match what is circled on the screen here. If not, cycle through the options by pressing the

buttons alongside each menu item until it is identical.

Pulse Generator & Oscilloscope

Current Menu Displayed

Setting Up The Oscilloscope

Tektronix TDS 2022C . r—— gt~ Pl —
* O0000D® .
(~)L R R
o;
A~
OEL = '
- & £y
€3
€3
Tl Ty
' A
b —1 : ’_& K&f '\-‘:‘.‘f
| - . -'
Menu Cycle Buttons
Trigger Menu

Button

Press the Channel 1 button on your oscilloscope. This will display the Channel Menu on your screen as seen above.
Make sure your settings match what is circled on the screen here. If not, cycle through the options by pressing the

buttons alongside each menu item until it is identical.

Pulse Generator & Oscilloscope

Stabilizing the Signal

Tektronix TDS2022C

e
()f

00000

Trigger Level Knob

Trigger Level Value

Most likely at this point, your signal is unstable, meaning its moving around the screen. To stabilize it, adjust the trigger
level to whatever value you need to so that the wave remains still. It should be some value in between your low and
high level, which in our case, is 0 and 5 volts respectively.

Pulse Generator & Oscilloscope

Setting the Appropriate Scale

Tektronix TDS 2022C 200N . P e e -~ 3 . P
’ £33 OO @ _
' (~ L EI I B
m h','
.f_'
O &
O) 48) (i)
(1) [(=)(2) - - ||
@) = (s [t
i) U
' | s Tl Ty
r e e &
- & (& N
-/ \

The knob highlighted in purple controls the voltage scale
(y-axis). Adjusting this knob changes how much voltage
each box in the grid represents. In this case, | have my
scale set to 5 volts, so each box represents 5 volts.

The knob highlighted in yellow controls the time scale (x-
axis). Adjusting this knob changes how much time each
box in the grid represents. In this case, | have my scale set
to 500us (microseconds), so each box represents 500us.

Pulse Generator & Oscilloscope

Verify the Reading

Tektronix TDS2022C 200Amix . gl e)
| -— COLEOR® o
()=) = '
O, E
(= One Period
(=) L - (2ms) .
@) 4) (=) 5v
() (=) 4 ik e Rl
m L% L% ’
O Seate ('z) 500ps.500s.500ps 500s
3 Tl Ty
= | 4 KJ o
| - A |

As you recall, we set our pulse generator to a period of 2ms (milliseconds) and a high level of 5 volts. Judging from the
signal seen on our oscilloscope, we can see that everything is in working order. The amplitude is one box high,
representing 5 volts, and the period, the length of time from the start of one pulse to the next, is 2000 microseconds
which is equal to 2 milliseconds.

{ Arduino Mega or Meg... ~ o™

sketch_oct31a.ino s
1 setup() {

= B— Testing the accuracy of the Arduino Timer

#include <SPI.h> // Allows you to communicate with SPI (Serial Peripheral Interface) devices, withg4the Atiiino as the master device
#include <Wire.h> // Enable this line if using Arduino Uno, Mega, etc. 1. pen Up da new SketCh, delete the defaU|t COde that

// Signal pins are given a name, Global variables

#define triggerPin 2 // Trigger signal pin appea rs |n the neW WIndOW.

// Interrupt service routine

// This function must be implemented, so that the TCNT1 counter counts 2. Copy and paste fo”OW|ng Code |n |tS place:

ISR(TIMER1_OVF_vect)

{ 3. Note the baudrate here is 115200 as seen in the line of
// All Arduino programs must contain a setup() and loop() functions

cetun() { code “Serial.begin(115200)”. Ensure the baud rate in

berial.begin(llSZBB); /V Starts the serial monitor, sets baudrate to "115200" BPS

pinMode(triggerPin,INPUT); // Sets the digital pin 2 as an input your IDE |S Set to the same Value.

delay(1000); // Pauses the program for one second at the moment of open

// Initializes the Timerl registers (16-bit timer -- counts from @ to 65535 ad nauseam). Timer intq;.ruptR[uLﬁestheeGOldg wpteblf]lchEw‘artrl@WrIe@ﬁemehh@bétrg)pslaeftts'

// Timerl is a 16-bit timer, so the timer will increase its value until it reaches its maximum count before reverting to ©. is enables the program to run a different set of tommands. Once
executed, the program resumes at the same position.

TCCR1A = @; // Sets entire TCCR1A--Timerl Control Register A--to ©

TCCR1B = @; // Timer 1 Control Register B set to © (The physical address of timerl)

TCCR1C = @; // Timer 1 Control Register C set to ©

TCNT1 = @; // Initialize timer/counter 1's value to ©

TIMSK1 = _BV(TOIE1); // Timer/Counterl's interrupt mask register; TOIE1l is the timer/Counterl overflow interrupt enable

TCCR1B = 1; // Timer 1 Control Register B set to 1

attachInterrupt(digitalPinToInterrupt(triggerPin), Trigger, RISING); // Interrupts execution of the program when a trigger signal is received. The "Trigger" function is subsequently executed

Trigger(){
temp = TCNT1; // Only positive integers are required
Serial.print("TCNT1 value: ");
Serial.println(temp); // Prints the value stored at temp

loop() {
// No lines are necessary here

}

Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q

& sketch_nov21b | Arduino IDE 2.3.3

File Edit Sketch Tools Help

{ Arduino Mega or Meg... ~ N

sketch_nov21b.ino

""" Testing the accuracy of the Arduino Timer

tup() {

1. The Serial Monitor should print out TCNT (Timer Count) values which
el represent the number the counter reached the moment the pulse came in r
15 e from:the pulse generator.

TCCRIA = @ // Set : t ' *** |f your results are scrolling down continuously, you can stop the auto-

TCCR1B = 6;

i scrolling by clicking the double down arrow icon here.

e e ' **%1f the ‘auto-scrolling button is unresponsive, turn off the signal coming from
attachInterrupt(digitalPinToInterrupt(triggerPin), Trigger, RISING{; 3
o he pulse generator, by pressing the Output button near the CH1 cable.

temp = TCNT1;
i "TCNT1 value: “);

Serial Xionitor x Output

16:18:54.338 -> TCNT1 wvalue: 48604
16:18:54.338 —> TCNT1 value: 15065
16:18:54.338 —> TCHNT1 value: 47067
16:18:54.338 —> TCNT1 value: 13524
16:18:54.338 —> TCHT1 wvalue: 45524
16:18:54.338 -> TCNT1 value: 11985
16:18:54.338 —> TCNT1 value: 43982
16:18:54.338 -> TCNT1 wvalue: 10444
16:18:54.338 —> TCNT1 value: 42441
16:18:54.338 —> TCNT1 value: 8904
16:18:54.338 -> TCNT1 wvalue: 40904
16:18:54.338 —> TCNT1 value: 7362
16:18:54.338 —> TCNT1 value: 39364
16:18:54.338 -> TCNT1 value: 5823
16:18:54.338 -> TCNT1 value: 37819

Ln 15,Col 35 Arduino Mega or Mega 2560 on COM10 22 8

S —
418 PM
1/21/2024

AL

Arduino Timers

Testing Arduino Timer Accuracy

Now that we have a better understanding of how the Arduino Timer works, let us use this knowledge to test its accuracy.

The last snippet of code | gave you logged the number the Arduino Timer reached as each pulse came in from the
Pulse Generator. Knowing that we set the Pulse Generator to 2ms pulses we would expect the counter to have 2ms
in between each printout as there are 2ms in between each pulse.

e To test this, select any two consecutive readings. Keep in mind that your numbers will differ

: 15065 from mine, but the results should be similar. I'll use the first two readings here.
: 2/067

= 13524
: 45524 The first pulse occurred at 48,604 ticks, and the next pulse came in at 15,065 ticks.
= 11985

= 43982
: 10444 We know that the timer counts up to 65,535 before resetting to 0. To determine how many

: :z;“ ticks occurred between each pulse and calculate the elapsed time, subtract the first reading
- 4

s from the maximum tick count, then add the second reading.

: 7362
= 39364

23§i9 65,535 - 48,604 = 16,931 ticks before the timer count reset to 0
0+ 15,065 = 15,065 ticks after the timer count reset to 0

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Arduino Timers

Testing Arduino Timer Accuracy

Recalling the calculation we did before to demonstrate the duration of each tick was 62.5 nanoseconds, we can now
determine the accuracy of our Arduino Timer. Again, it should be 2ms (equivalent to 2 million nanoseconds) as was
set on the Pulse Generator.

16,391 ticks before the timer count reset to O
+ 15,065 ticks after the timer count reset to 0

31,996 = ticks in between each pulse

1 second
16,000,000 ticks

= 62.5 nanoseconds per tick

31,996 x 62.5 = 1,999,750 nanoseconds

* As you can see the reading is extremely close to perfect, off by only 250ns.

Arduino Timers

Testing Arduino Timer Accuracy

Keep in mind that if we had chosen a different set of consecutive readings, one where the counter didn’t reset, like
the readings circled below, you could simply subtract the smaller reading from the larger one and multiply the
difference by 62.5 to get your final result.

value:
value:

value:

>
>
>
>
>
=
>
>
>
v
>
>

47,067 - 15,065 - 32,002 ticks in between each pulse

value:
value:
value:

32,002 X 62.5 = 2,000,125 nanoseconds between each pulse

value:
value:
value:
value:
value:
value:
value:
value:

value:

* Again the reading is extremely close to what we expected at 2ms.
* To convert nanoseconds to milliseconds you can divide the number by one million.

Flying Solo:
Perform this experiment twice more with the following settings for your pulse

generator and test the Arduino’s accuracy before moving on to the next slide:
- 3ms period
- 1ms period

Arduino Timers

Higher Frequencies / Shorter Periods

You may have noticed that your 1ms calculations may appear inaccurate, with the difference of the TCNT1 counts
exceeding expected values by over 50%.

The baud rate of your Arduino determines how fast data is transmitted (in bits per second) and must align with the

pulse signal frequency being measured. If the baud rate is too low, the Arduino may struggle to keep up with rapid
signal changes, resulting in data loss or inaccuracies.

With a 1 kHz signal (1ms period), increasing the baud rate to 230,400 can improve accuracy by ensuring the Arduino
processes data quickly enough to match the pulse frequency. Optimal results require matching the baud rate to your

signal's frequency and system needs. Experiment with different baud rates while considering factors like noise,
interference, and hardware quality.

Arduino Timers

Higher Frequencies / Shorter Periods

Test out a higher baud rate for the 1ms period and see if it brings you more accurate results.

Don’t forget to change the line of code responsible for setting the baud rate too! It should match the baud rate setting in the
IDE.

4'.55\:r'r’iﬂ, INPUT) H
delay(1000);

TCCR1A = ©;
TCCR1B = ©;
TCCRIC = ©;

Baud Rates

Baud Rates

Knowing that a higher baud rate results in faster data transmission, you might be tempted to always set a high baud rate. This
does, however, come with drawbacks.

Increased Susceptibility to Noise: High baud rates make
communication more sensitive to electrical noise and
interference, which can lead to corrupted data. This is especially
problematic in environments with significant electromagnetic
interference (EMI).

Higher Error Rate Over Long Distances: If the Arduino is
communicating over a longer cable, higher baud rates are more
likely to encounter errors due to signal degradation.

Baud Rates

Baud Rates

Knowing that a higher baud rate results in faster data transmission, you might be tempted to always set a high baud rate. This
does, however, come with drawbacks.

Excessive CPU Overhead: A high baud rate increases the
frequency at which the Arduino's processor handles serial
interrupts, leaving less processing power for other tasks and
potentially slowing down the system.

Waste of Resources: For longer signal periods or slower signals,
a high baud rate is unnecessary and inefficient. It forces the
system to process more data than required, which can be
wasteful in terms of energy and processing time.

When writing code for the Arduino, it’s important to experiment with various baud rates to determine the one that
delivers the most accurate readings.

Module IX

Retrieving NMEA Data
from the GPS Breakout v.3

Retrieving NMEA Data

Setup
Here is what your setup should look like!

Make the following connections:

Connections
(Power) GND GND
(Power) 5V VIN

(Comm) TX1 RX
(Comm) RX1 X

{ Arduino Mega or Meg... ~ o™

sketch_dec4c.ino

Retrieving NMEA Data

1. Open up a new sketch, delete the default code make
sure your baud rate is set to 9600.

2. Paste the code given below.

3. Run the code

setup() |
Serial.begin(9600);

Seriall.begin(9600);
}

|| Loop() {
% if (Seriall.available()) { f o=

c = Seriall.read();)l
Serial.print(c);

}

}

CJ indexing: 26/27 Ln1,Col1 Arduino Mega or Mega 2560 on COM10 Q B8

5:38 PM
a [‘;? & 12/4/2024

& sketch_decdc | Arduino IDE

‘ { Arduino Mega or Meg... ~ N

sketch_dec4c.ino vas
up() {

loop() {

1e

Retrieving NMEA Data

Results should appear as seen below.

Serial Monitor x Output

New Line v ‘

.227 -> $GPGGA,224304.000,4045.4040,N,07345.4025,W,2,08,1.17,58.1,M,-34.3,M, 0000, 0000%67
4.389 —> $GPGSA,A, 3,14,22,30,08,07,27,13,17,,,,,1.88,1.17,1.47*0E

.447 -> $GPGSV, 3,1,12,07, 65,195, 25, 30, 60, 284, 37, 21, 56, 105, 16, 02, 53, 142, 17*7F

.574 -> $GPGsSV,3,2,12,08,45,051,17,14, 34,297,322, 44, 25,235, 38,17,19,237,26*7B

.591 -> $GPGSV, 3,3,12,22,15,289, 31,13, 14, 314, 28, 27,12, 055, 21, 10, 02, 050, 16*70

.656 —> $GPRMC,224304.000,A,4045.4040,N,07345.4025,W, 0.08, 317.75,041224,, ,0*77

.754 -> $GPVIG,317.75,T,,M,0.08,N,0.15,K,D*33

17:43:05.274 -> $GPGGA,224305.000,4045.4041,N,07345.4022,W,2,08,1.11,58.0,M,-34.3,M, 0000, 0000*67
17:43:05.373 -> $GPGSA,A, 3,14, 22, 30,08,07,27,13,17,,,,,1-.38,1.11,0.83*0A

17:43:05.438 —> $GPRMC, 224305.000,A,4045.4041,N,07345.4022,W,0.04,12.74,041224,,,D*4B
17:43:05.504 —> $GEVIG,12.74,T,,M,0.04,K,0.08,K,D*04

17:43:06.290 -> $GPGGA,224306.000,4045.4042,N,07345.4021,W, 2,08,1.17,57.8,M,-34.3,M, 0000, 0000*65
17:43:06.388 -> $GBGSA,A, 3,14, 22,30,08,07,27,13,17,,,,,1-88,1.17,1.47T*0E

17:43:06.454 —> S$GPRMC,224306.000,3,4045.4042,N,07345.4021,W, 0.04, 321.91,041224,,,D*70
17:43:06.520 -> $GPVIG,321.91,T,,M,0.04,N,0.08,K,D*3C

17:43:07.290 —> $GPGGA,224307.000,4045.4042,N,07345.4020,W,2,08,1.11,57.7,M,-34.3,M, 0000, 0000*6<
17:45:07.388 -> $GPGSA,A,3,14,22,30,08,07,27,13,17,,,,,1.38,1.11,0.83%0A

17:43:0%.453 —-> S$GPRMC, 224307.000,A,4045.4042,N,07345.4020,W, 0.02, 290.72, 041224, , ,D*70
17:43:07.51%-> $GPVIG,290.72,T, ,M,0.02,N, 0.03,K,D*37

17:43:08.244 -> $CPGGA,224308.000,4045.4042,N,07

Ln 10, Col 1 Arduino Mega or Mega 2560 on COM10 22 8

543 PM
- E? B 12/4/2024

Understanding NMEA Data

Sentence Types Output by Adafruit GPS Breakout v.3

As you may have noticed in your results, there are the five sentence types that the Adafruit Ultimate GPS
Breakout v.3 is capable of transmitting.

Sentence Type | Data Type

GGA Global Positioning System Fixed Data

GSA GNSS DOP and Active Satellites

GSV GNSS Satellites in View

RMC Recommended Minimum Specific GNSS Data
VTG Course Over Ground and Ground Speed

*GNSS stands for Global Navigation Satellite System.

Understanding NMEA Data

GPGGA (GGA Sentence Type)
GPGGA Sentence Types follow I I T e

this sequence and format,
printed in order from left to
right, and separated by

commas.

Message ID
UTC Time
Latitude

N/S Indicator
Longitude
E/W Indicator
Position Fix Indicator
Satellites Used
HDOP

MSL Altitude
Units

Geoid Separation

Units
Age of Diff. Corr.
Diff. Ref. Station ID

Checksum

SGPGGA
080754.000
3342.6618
N
11751.3858
W
1
10
1.2
27.0

-34.2

0000
*5E

Meters
Meters

Meters

Meters

Seconds

GGA Protocol Header

hhmmess.sss

ddmm.mmmm

N = North, S = South

dddmm.mmmm

E = East, W = West

Range 0 — 6, * See Position Fix Indicator Table (next slide)*
Range 0- 12

Horizontal Dilution of Precision

Geoid-to-ellipsoid separation. Ellipsoid altitude = MSL
Altitude + Geoid Separation

Null fields when DGPS is not used

Understanding NMEA Data

GPGGA (GGA Sentence Type)

These are the values and meanings for the Position Fix indicator used in the GPGGA Sentence Type

Position Fix Indicator

0 Fix Not Available

1 GPS SPS Mode, Fix Valid

2 Differential GPS (DGPS), SPS Mode, Fix Valid
3-5 Not Supported

6 Dead Reckoning Mode, Fix Valid

Understanding NMEA Data

GPGGA (GGA Sentence Type Example)

Here is an example of a GGA sentence type from the previous output

Serial Monitor X Output

17:43:04.327 -> $GPGGA,224304.000,4045.4040,N, 07345.4025,W,2,08,1.17,58.1,M, -34.3,M, 0000, 0000*67

Sentence Breakdown

—— Diff. Ref.
Message ID atitude HDOP Unit Unit Station ID
SGPGGA, 224304.000, 4045.4040, N, 07345.4025, W, 2, 08, 1.17, 58.1, M, -34.3, M, 0000, 0000*67
Timestamp Longitude Satellites MSL Geoid Age of checksum

(10:43:04.000) Used Altitude Separation Diff. Corr.

Understanding NMEA Data

GPGSA (GSA Sentence Type)

GPGSA Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

s | Eomple | unit_|Desmipon |

Message ID
Mode 1
Mode 2
Satellite Used
Satellite Used

Satellite Used
PDOP
HDOP
VDOP

Checksum

SGPGSA
A
3
07
02

1.8
1.0
1.5
*33

GSA Protocol Header

A or M, *See Mode 1 table*
Range 1 — 3, *See Mode 2 table*
SV on Channel 1

SV on Channel 2

SV on Channel 12
Position Dilution of Precision
Horizontal Dilution of Precision

Vertical Dilution of Precision

Understanding NMEA Data

GPGSA (GSA Sentence Type)

These are the values and meanings for the Mode 1 and Mode 2 entries from the previous table.

Mode 1
Data |Descripton |

M Manual — forced to operate in 2D or 3D mode

A 2D Automatic — allowed to automatically switch 2D/3D

Mode 2
| Data | Description

1 Fix not available
2 2D (<4 SVs used)
3 3D (<3 SVs used

Understanding NMEA Data

GPGSA (GSA Sentence Type Example)

Here is an example of a GSA sentence type from the previous output

Serial Monitor X Output

17:43:04.389 -> $GPGSA,A,3,14,22,30,08,07,27,13,17,,;:,. 1.88,1.17,1.47*0E

Sentence Breakdown

Message ID Mode 2 VDOP
SGPGSA, A, 3, 14, 22, 30, 08, 07, 27, 13, 17,,,,, ,1.17,1.47*0E
Mode 1 Satellites Used HDOP Checksum

Understanding NMEA Data

GPGSV (GSV Sentence Type)

GPGSV Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

D e T L

Note the ellipsis in the left

et @alu Nresias ket Message ID SGPGSV GSV Protocol Header
the information repeats until =~ Number of Messages 2 e
all Satellite ID’s and Message Number 1 Range 1-3
associated information are Servllives T iz 08
given. Satellite ID 07 Channel 1 (Range 1-32)
Elevation 79 Degrees Channel 1 (Max. 90)
Azimuth 048 Degrees Channel 1 (True, Range 0 — 359)
SNR (C/NO) 42 dBHz Range 0 — 99, null when not tracking
Satellite ID 27 Channel 3 (Range 1-32)
Elevation 21 Degrees Channel 3 (Max. 90)
Azimuth 138 Degrees Channel 3 (True, Range 0 — 359)
SNR (C/NO) 35 dBHz Range 0 — 99, null when not tracking

Checksum

Understanding NMEA Data

GPGSV (GSV Sentence Type Example)

Here is an example of a GSV sentence type from the previous output

Serial Monitor X

17:43:04.447 -> $GPGSV,3,1,12,07,65,195,25,30,60,284,37,21,56,105,16,02,53,142,17*7F
17:43:04.574 -> $GPGSV,3,2,12,08,45,051,17,14,34,297,32,44,25,235,38,17,19,237,26*7B
17:43:04.591 -> $GPGSV,3,3,12,22,15,289,31,13,14,314,28,27,12,055,21,10,02,050,16*70

Sentence Breakdown

Message ID Message # Satellite ID Azimuth Satellite ID Azimuth Satellite ID Azimuth Satellite ID Azimuth e i

SGPGSVY, 3,1, 12,07, 65, 195, 25, 30, 60, 284, 37, 21, 56, 105, 16, 02, 53, 142, 17*7F

of Satellites in SNR SNR SNR SNR
Messages View (C/NO) (C/NO) (C/NO) (C/NO)

Understanding NMEA Data

GPRMC (RMC Sentence Type)
GPRMC Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

e T

Message ID SGPRMC RMC Protocol Header

UTC Time 161229.487 hhmmess.sss

Status A A = Data Valid, V = Data not Valid
Latitude 3723.2475 ddmm.mmmm

N/S Indicator N N = North, S = South

Longitude 12158.3416 dddmm.mmmm

E/W Indicator w E = East, W = West

Speed Over Ground 13 Knots

Course Over Ground 309.62 Degrees

Date 120598 ddmmyy

Magnetic Variation Degrees E = East, W = West

E/W Indicator E E = East

Mode A A = Autonomous, D = DGPS, E = DR

Checksum *10

Understanding NMEA Data

GPRMC (RMC Sentence Type Example)

Here is an example of a RMC sentence type from the previous output

Serial Monitor X

17:43:04.656 -> S$SGPRMC,224304.000,A,4045.4040,N,07345.4025,W,0.08,317.75,041224,, ,D*77

Sentence Breakdown

Course Over

Message ID Status Longitude Ground Checksum
SGPRMC, 224304.000, A, 4045.4040, N, 07345.4025, W, 0.08, 317.75, 041224,,,D*77
UTC Time Latitude Speed Over Date Mode

Ground

Understanding NMEA Data

GPVTG (VTG Sentence Type)

GPVTG Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

o | bampe | Uk |oesstor

SGPVTG

Message ID
Course
Reference
Course
Reference
Speed
Units
Speed
Units
Mode

Checksum

309.62
T

0.13

0.2

*23

degrees

degrees

knots

km/hr

RMC Protocol Header

Measured Heading

True

Measured heading

Magnetic

Measured horizontal speed

Knots

Measured horizontal speed
Kilometers per hour

A = Autonomous, D = DGPS, E = DR

Understanding NMEA Data

GPVTG (VTG Sentence Type Example)

Here is an example of a RMC sentence type from the previous output

Serial Monitor X Output

17:43:04.754 -> $GPVIG,317.75,T, ,M,0.08,N,0.15,K,D*33

Sentence Breakdown

Message ID Speed Speed Mode
SGPVTG, 317.75,T,, M, 0.08, N, 0.15, K, D*77

Course Units Units Checksum

Arduino Timers

Identifying True Arduino Timer Tick Period

Now we will be testing for the True Arduino Timer Tick Period.

To do this, disconnect all of your previous jumper wires and reconfigure it accordingly:

Connections

* Note for the E10 and F10 pins on the breadboard, you must
m Breadboard Breadboard connect them using a resistor, not a jumper wire.

(POWGF) GND Negative Rail Negative Rails
/ \
(PWM) 11 A10 — —~—~—
+ O b ¢c de f g h i + O
(PWM) 2 B10 °e OO;TT——TT;Oofii\
IR YXXY) eeeee |o
E10 (Resistor) F10 (Resistor) e 00000 00000 |00
 EINYX XY eeecee |0 Breadboard
J10 Negative Rail ©0] 00606060 000005100 Pin Assignments
eeecee eeecee
 EINY XXX eeeee |0
NI X Y eeecee |0
 EINY XXX eeeee |0
ee|/eccee eeeoounjoe

Pulse Generator & Oscilloscope

Setup

Here is what your setup should look like!

Connections
" arduino_| breadboard | _Breadboard
(Power) GND Negative Rail
(PWM) 11 A10
(PWM) 2 B10
E10 (Resistor) F10 (Resistor)
J10 Negative Rail

Y Arduino Mega or Meg... ~

sketch_oct31a.ino

Testing the accuracy of the Arduino Timer
#include <TimerOne.h> 1. Open up a new sketch, delete the

//This line includes the TimerOne library, which provides functions for configuring and controlling

//Timerl on Arduino boards. This is commonly used for precise timing tasks like generating PWM signals

//or periodic interrupts.

setup() {

[serial.begin(96ee); |

//Initializes serial communication with a baud rate of 9600 bits per second, allowing the Arduino 2
//to send data to and receive data from a computer. .
pinMode(11,0UTPUT);

//Configures pin 11 as an output. This pin is used to output a PWM signal generated by Timerl.

pinMode(2,INPUT); 3
//Configures pin 2 as an input. This pin is used to read a digital signal. .
Timerl.initialize(1000000);
//Initializes Timerl with a period of 1,000,000 microseconds (1 second).
//This sets the base timing for the timer.

Timerl.pwm(11,100000);
//Configures Timerl to generate a PWM signal on pin 11. The duty cycle of the PWM signal is determined
//by the second parameter (100000).The duty cycle is calculated as (100000 / 1000000) * 100 = 10%.
//This means pin 11 will be ON for 10% of the timer's period and OFF for the remaining 90%.

loop() { 4
//The loop() function runs continuously after setup(). .
while(digitalRead(2) == HIGH) {

Serial.println(HIGH);
//This loop continuously reads the digital state of pin 2. If the signal is HIGH (logic 1, e.g.,
//button pressed), it prints 1 (the value of HIGH) to the serial monitor repeatedly until the signal changes.

while(digitalRead(2) == LOW) {

Serial.println(LOW);
//This loop behaves similarly but checks for a LOW signal (logic @, e.g., button not pressed).
//It prints @ (the value of LOW) to the serial monitor repeatedly until the signal changes.

default code that appears in the new
window.

Copy and paste following code in its
place:

Note the baudrate here is 9600 as
seen in the line of code
“Serial.begin(9600)”. Ensure the baud
rate in your IDE is set to the same
value.

Run the code with the arrow icon in
the top left.

* | recommend reading the comments left
in the code to understand the instructions

) being sent to the Arduino.

}

Ln1,Col1

Arduino Mega or Mega 2560 on COM10 Q)

& sketch_nov27a | Arduino IDE 2.3.3
File 2

{ Arduino Mega or Meg... ~ N

sketch_nov27a.ino

' ~ Testing the accuracy of the Arduino Counter

lode(2, INPUT) ;

1. The Serial Monitor should print out O for as long as signal
reads LOW and 1 for as long as the signal reads HIGH.

imer1.initialize(1000000);

Timer1.pum(11,106008);

1Read(2) == HIGH) {
t1ln(HIGH);

Serial Monitor X ¥ 0 =

17:06:51.945 —> 0
17:06:51.945 —> 0
17:06:51.945 —> 0
17:06:51.978 -> 0

17:06-51-878 —> 0
17:06:51.978 -> 0

17:06:51.978 -> 0
17:06:51.978 -> 0
17:06:51.978 -> 0
17:06:51.978 —-> 1
17:06:51.978 -> 1
17:06:51.978 —> 1

17:06:51.978 -> 1
17:06:51.978 -> 1

27:06:52.010 —> 1
Ln 33, Col2 Arduino Mega or Mega 2560 on COM10 22 8

507 PM
- E? B 12/3/2024

Arduino Timers

Further Testing of Arduino Timer Accuracy

As the comments in the code described, we set Timerl to send a pulse once every second that has a pulse width of

10%. So our expected results are that the pulses come in every second, and remain in the ON (HIGH) state for a
tenth of a second (100 milliseconds).

To find this out, we must log three timestamps as outlined below:

1. The timestamp when it changes
from O to 1.
3 2. The timestamp of the very next

1
O O instance it changes back from 1 to
0.

3. The timestamp of the very next

instance it changes back from 0 to
T||'|":E — 1.

Sguare wave

in

Amplitude

=]
4

. . . _ ;. , *With this data we can calculate how
To help visualize the information that we are taking, I've included this chart ..
Jbove accurate the Arduino is.

Arduino Timers

Further Testing of Arduino Timer Accuracy

Sguare wave

i 1. The difference between points 1
1 3 and 2 will give us the time the

% 6, @ signal remained in the ON (HIGH)

[} state.

,=:I1 1

5 2. The difference between points 1
and 3 will give us the time that
passes in between pulses.

TI|'|":E -

i)

}

1 Serial Monitor x il m

' These were the timestamps that |
collected. Obviously, your numbers
will be different but the math remains

the same.

17:06:51.945 -> 0
17:06:51.945 -> 0

17:06:52.076 —> 1
-076 —> 1

17:06:52.961 —> 0

17:06:51.978 -> 0
17:06:51.978 -> 0
17:06:51.978 -> 0
17:06:51.978 -> 0
17:06:=51_Q78 -> 0

17:06:51.978 -> 1

17:06:51.978 -> 1
17:06:51.9768 -> 1

17:06:51.978 —> 1
17:06:51.978 -> 1
17:06:52.010 -> 1

Q=0
17:06:52.109 -> O
17:06:52.109 -> 0
17:06 -109 —> 0

:06:52.109 —> 0
17:06:52.109 -> 0O

$52.993 > 1

As the time stamps are all from within
the same minute, we can drop that
when doing our calculations.

Arduino Timers

Further Testing of Arduino Timer Accuracy

“ Find the pulse width (subtract timestamp 1 from timestamp 2)

1 51.978 52.076 — 51.978 = .098 seconds (98 milliseconds)

2 52.076 Find the pulse period (subtract timestamp 1 from timestamp 3)

3 52 993 52.993 -51.978 = 1.015 seconds

3
il el I rewrmee— m Remember, we were expecting a pulse
period of 1 second and a pulse width

655 i?;‘é:iii:i:i = of a tenth of a second (100
i > milliseconds).

17:06:51.978 -> 0
= 51.978 -> 0

The results are close to what was
expected but now we want to quantify
the deviation observed here.

17:06:51.978 -> 0
17:06:51.976 -> 0

17:06=51_078 -> 0
17:06:51.978 -> 1
17:06:51.978 —> 1 b B
17:06:51.978 —> 1 17:06:52.109 —
17:06:51.978 -> 1
17:06:51.978 -> 1 17:06:52.109 -

17:06:52.109 -

17:06:52.993 -
17:06:52.993 —>

17:06:52.993 -

17:06:52.109 -

UM T 1 T BT
VMV VY VYV VY VYV VIV vV ¥
OO0 O0C DD OO0 OO0 OO HKHE M

17:06:52.010 -> 1

Integrating Putty in Timer Testing

To quantify the deviation, we need more than one datapoint. We need a sample set of datapoints that we can use to
determine the average deviation across. To do this, we use Putty to extract the information and from there we
export it to Excel.

Step-LrGlose the Serial Monitor in the Arduino IDE. Step 2: Click Open in the Putty window.

fe(2, INPUT) ;

pinMc

Timeri.initialize(1000000); #R PuTTY Configuration
: 1 Category:
- > = Session Options controlling session logging
Timerl.pwm(11,100000); Logging
T i Teminal Session logging i
Keyboard () None (®) Printable output
Bell © All session output (O S5H packets
Features (O SSH packets and raw data
3 =+ Window Log file name:
toep() o, Appearance C:\Users\Student\Desklop\Arduinos - S | Browse... |
Sehaionr (Log fil &Y, &M, &D for date, &T f
: (Log file name can contain &Y, &M, D for date, &T for
Read(2) 7= HIGH) { ;zrv:‘a:‘:m time, 8H for host name, and &P for port number)
A + lecti
1t1n(HIGH); Colours What to do if the log file aready exists:
L. Cornction O Aways overwrite it
e ©) Aways append o the end of &
Data © Ask the user every time
K Ly Proxy

Flush log file frequently

le(digitalRrad(2) ==) 55H
(digitalRdad(2) LOW). { . : 8 include header

Serial

LI SEITL LI ¥ 0= ’ Teinet Options speciic to SSH packet logging
Riogin
i New Lina = | 9500 baud - SUPDUP Omﬁ known password fields
[__] Omit session data
12:15:53.083 —>
A

12:15:53.083 —>
12:15:53.083 —>
12:15:53.083 —>
12:15:53.116 —>
12:15:53.116 —>
12:15:53.116 —>
12:15:53.116 —>
12:15:53.116 >
12:15:53.116 —>
12:15:53.116 >
12:15:53.116 —>
12:15:53.116 —
12:15:53.116 =>
12:15:53.116 —>

Recycle Bin

(== - I - T == - B [- T - Y

Ln 34, Col 1 Arduino Mega or Mega 2560 on COM10 (32 B

1215 PM
~)
i;? =) 12/11/2024

