
Arduino Mega Coding Tutorials to Use with the
Cosmic Ray Detector

DAQ Electronics

Gabe Kim / Fatima Saleem / Sonia Rostami / Lily Carter / Sam Resto

Queensborough Community College
Mentor: R. Armendariz

Hardware Overview

Module I

What is Arduino?

Arduino is an open-source electronics platform that combines hardware and software to create interactive projects.
It utilizes a variety of microcontroller-based boards, which can be programmed using the Arduino IDE (Integrated
Development Environment), a software application where you write the code that tells the Arduino what to do.

Software Hardware

Instructions

Data

Hardware Overview

Your first step should be to familiarize yourself with the hardware you’ll be using. Understanding the purpose and
function of each component is important for resolving troubleshooting issues and designing effective circuits. It also
helps prevent damage by ensuring safe connections and simplifies the integration of components into your projects,
improving overall functionality and reliability.

Microcontroller

Arduino Mega 2560
The Arduino Mega 2560 is a type of microcontroller,
which is a small computer on a single circuit board. It
is used to control various electronic devices and
projects. Imagine it as the "brain" that tells other
parts what to do.

Here’s how it works:
•Inputs: It can take signals from sensors (like a
temperature sensor or a GPS chip) that provide
information.
•Processing: The Arduino uses this information to
make decisions based on a program (set of
instructions) that you write in your code.
•Outputs: After processing the inputs, it can control
things like lights, motors, or sounds by sending
signals to them.

Microcontroller – Arduino Mega 2560

Microcontroller – Power Pins

Arduino Mega 2560 Pins
The GND pins on the Arduino Mega 2560 are used to complete the
electrical circuit by providing a common ground. There are multiple
GND pins on the board, and they are all interconnected internally. Any
device or sensor connected to the board that requires power must also
be connected to one of the GND pins to ensure proper current flow and
circuit stability.

The Vin pin is used to supply external power to the Arduino Mega 2560
when it is not connected to a computer via USB. You can connect a
power source like a battery or an external power adapter to this pin.
The voltage input should typically be between 7-12V. The onboard
voltage regulator then steps this down to the 5V required to power the
board. When the board is powered through Vin, it provides a way to
power both the board and external components without relying on USB
power.

The IOREF pin on the Arduino Mega 2560 provides the reference voltage for
the board’s input/output pins, typically 5V, letting external components know
the board’s logic voltage. This is important because different devices may
operate at different logic levels (e.g., 3.3V or 5V), and the IOREF pin helps
them adapt to the correct voltage. Logic voltage refers to the voltage levels
used to represent digital signals (binary 1/0), where "high" is typically 5V and
"low" is 0V. This pin ensures safe communication and prevents potential
damage from voltage mismatches.

Microcontroller – Power Pins

Arduino Mega 2560 Pins
The 3.3V pin provides a regulated 3.3V output for powering
components or sensors that operate at lower voltages. This is especially
useful for devices that require lower voltage, as connecting them to the
5V pin might damage them. The 3.3V pin is powered by an onboard
voltage regulator, ensuring that it delivers a stable 3.3V output.

The 5V pin supplies a regulated 5V output, which can be used to power
external components or sensors that require 5V to operate. This pin is
powered either through the USB connection or via the voltage regulator
when the board is powered through the Vin pin. It provides a stable 5V,
making it convenient for powering devices directly from the board
without needing an additional power supply.

The Reset pin is used to reset the microcontroller on the Arduino Mega 2560.
When you connect this pin to ground, it triggers a manual reset of the board.
This can be useful in situations where you need to restart the board and
reload the program, without disconnecting power or hitting the physical reset
button. It's often used in circuits where automatic or remote resets are
required.

Microcontroller – Analog Pins

Arduino Mega 2560 Pins

The AREF pin (Analog Reference Pin) on the Arduino Mega 2560 is used to set a custom reference
voltage for the analog-to-digital converter (ADC). By default, the Arduino uses 5V as the reference
voltage, meaning that it maps input voltages between 0 and 5V to a digital range of 0 to 1023.

However, by connecting a different voltage to the AREF pin (typically between 1.1V and 5V), you can
adjust this range to match the expected input from your sensors, improving accuracy. For example, if
your sensor outputs a maximum of 2.5V, you can set the AREF to 2.5V, and the Arduino will map the
input more precisely across the 0 to 1023 range. However, setting the AREF voltage too low (like
0.005V) would reduce the resolution significantly and might result in unusable or noisy data.

The pins in the analog section (A0 – 15) of the Arduino Mega 2560 are used for reading
analog input signals and converting them into digital values that the microcontroller can
process.

• Function: These pins are used to read varying voltage levels from sensors or other
input devices (e.g., temperature sensors). They can measure a range of voltages
between 0V and 5V.

• Analog-to-Digital Conversion (ADC): The Arduino Mega has a 10-bit ADC, which
means it can convert the analog input into a digital value between 0 and 1023. For
example, 0V would be read as 0, and 5V would be read as 1023, with values in
between representing the corresponding voltage.

• Analog input signals are continuous, variable electrical signals that can take on a
range of values, unlike digital signals, which are either on (1) or off (0).

Microcontroller – Digital Pins

Arduino Mega 2560 Pins

The digital pins on the Arduino Mega 2560 are used for input and output of digital signals.
These signals can only have two states: HIGH (on) or LOW (off). When used as inputs,
digital pins can read the state of external devices like buttons, switches, or sensors,
detecting whether they are in an on/off state. When used as outputs, the digital pins can
control devices such as LEDs, motors, or relays, by sending a HIGH (5V) or LOW (0V) signal
to turn them on or off.

• Pins D22 to D53 can be used as digital inputs or outputs.
• HIGH/LOW Logic: The pins output 5V when set to HIGH and 0V when set to LOW.

*** The digital pins can be utilized by code written in the Arduino IDE to control the
function of external components.

Microcontroller – Communication Pins

Arduino Mega 2560 Pins

TX Pins (TX0, TX1, TX2, TX3): These pins are used to transmit data from the
Arduino to other devices. Each TX pin corresponds to a specific serial port: TX0 is
associated with Serial, TX1 with Serial1, TX2 with Serial2, and TX3 with Serial3.
When the Arduino sends data, it sends it out through the appropriate TX pin,
which can be connected to the RX pin of another device for communication.

RX Pins (RX0, RX1, RX2, RX3): These pins are used to receive data from external
devices into the Arduino. Each RX pin corresponds to a specific serial port: RX0 is
associated with Serial, RX1 with Serial1, RX2 with Serial2, and RX3 with Serial3.
When data is sent from another device, it enters the Arduino through the
appropriate RX pin, allowing the microcontroller to process the incoming data.

What is Serial Data?
All TX pins operate using the same serial communication protocol (UART). This means they all transmit data in the same way, using the same format
(typically a start bit, 8 bits of data, then a stop bit).
Bit-by-Bit Transmission: In serial communication, data is transmitted one bit after another.
Start and Stop Bits: In asynchronous serial communication, each data packet typically starts with a start bit and ends with one or more stop bits. This helps
the receiving device know when to start and stop reading the incoming data
Data Rate: Serial communication is characterized by its baud rate, which is the number of signal changes or symbols sent per second. This is important for
determining the speed of data transmission.

Microcontroller – Communication Pins

Arduino Mega 2560 Pins

The SDA pin is the Serial Data Line used for I2C (Inter-Integrated Circuit)
communication. It is responsible for carrying the data being transmitted between
the master device (e.g., the Arduino) and one or more slave devices (such as
sensors, displays, or other microcontrollers). The SDA line is bidirectional, allowing
data to flow in both directions, depending on the communication needs.

The SCL pin is the Serial Clock Line for I2C communication. It provides the clock
signal that synchronizes the data transmission over the SDA line. The master
device generates the clock signal on the SCL pin, which ensures that both the
master and slave devices are synchronized in terms of timing during data
exchange. The SCL line is essential for coordinating when data bits are read from
or written to the SDA line.

Microcontroller – PWM Pins

Arduino Mega 2560 Pins
On the Arduino Mega 2560, the following pins are capable of generating PWM signals and
here are their default assigned timers:
• Pin 2: PWM Output (Timer 3) Pin 3: PWM Output (Timer 3)
• Pin 4: PWM Output (Timer 0) Pin 5: PWM Output (Timer 3)
• Pin 6: PWM Output (Timer 4) Pin 7: PWM Output (Timer 4)
• Pin 8: PWM Output (Timer 4) Pin 9: PWM Output (Timer 2)
• Pin 10: PWM Output (Timer 2) Pin 11: PWM Output (Timer 1)
• Pin 12: PWM Output (Timer 1) Pin 13: PWM Output (Timer 0)

Timer Differences
Feature Timer 0 (4,13) Timer 1 (11,12) Timer 2 (9,10) Timer 3 (2,3,5) Timer 4 (6,7,8)

Bit Resolution 8-bit 16-bit 8-bit 16-bit 16-bit

Count Range 0 to 255 0 to 65,535 0 to 255 0 to 65,535 0 to 65,535

Special Functions Basic timing, PWM
Input capture, output
compare, high-
resolution PWM

Basic timing, PWM
Input capture, output
compare, high-
resolution PWM

Input capture, output
compare, high-
resolution PWM

Description
Used for general-
purpose timing and
PWM.

High-resolution timing
and precise PWM.

Similar to Timer 0,
used for PWM
generation.

Advanced timing and
PWM capabilities.

Similar to Timer 3,
provides high-
resolution PWM.

Microcontroller – Reset Button

Arduino Mega 2560 Reset Button
On the Arduino ATmega2560, the reset button essentially restarts the microcontroller,
stopping all current processes and returning it to the initial state. Here’s what happens
when you press it:

• Program Restart: The microcontroller stops its current program, clears any ongoing
tasks, and restarts from the beginning of the loaded code.

• Memory and Variables: Temporary variables and states stored in RAM are cleared.
Non-volatile storage (EEPROM and Flash memory) remains unchanged, meaning stored
code and saved data stay intact.

• Bootloader Activation: If the reset occurs while the Arduino is connected to a
computer (like during programming), it briefly enters bootloader mode, allowing it to
accept new code if uploading.

The reset button is handy for debugging, allowing you to restart the Arduino without
unplugging it or cycling power.

Temp. & Pressure Sensor

Adafruit BMP280 – Barometric Pressure and Temperature Sensor

The BMP280 sensor measures the temperature and
barometric pressure of the surrounding air or
environment in which it is placed. It detects the
ambient temperature and the atmospheric pressure
and is responsible for sending that data to the
microcontroller.

Temp. & Pressure Sensor

Adafruit BMP280 Sensor Pins
The VIN (Voltage Input) pin on the BMP280
sensor is used to connect the sensor to a
power supply. It typically accepts a voltage
range of 3.3V to 5V, allowing the sensor to
operate. This pin provides the necessary
power for the sensor to function and perform
measurements of temperature and barometric
pressure.

The 3Vo (3 Volt) pin is used to provide a
regulated 3.3V output. This pin can be used to
power other components in your project, such
as sensors or small devices that require 3.3V. It
allows you to simplify your wiring by drawing
power from the BMP280 module instead of
using a separate power supply. The GND pin (Ground) on the BMP280 sensor is used to establish the

ground connection for the sensor. This pin completes the electrical
circuit by providing a common reference point for voltage levels. It
should be connected to the ground (negative) terminal of your power
supply or microcontroller. Proper grounding is essential for the sensor
to function correctly, as it helps to stabilize the signals and prevent
noise in the system.

The SCK pin (Serial Clock) is used in SPI (Serial
Peripheral Interface) communication to provide a
timing signal from the master device (usually a
microcontroller) to the BMP280 sensor.
In this setup, the SCK pin acts as a clock that
synchronizes the data exchange between the
master and the sensor. When the microcontroller
sends a signal on the SCK pin, it indicates to the
BMP280 when to read or send data. This ensures
that both devices are working in harmony, allowing
for accurate communication. Without the SCK pin,
the sensor and microcontroller wouldn't be able to
coordinate their data transfer effectively,
potentially leading to errors in the information
exchanged.

Temp. & Pressure Sensor

Adafruit BMP280 Sensor Pins
The SDO pin (Serial Data Out) on the BMP280
sensor is used to send data from the sensor to
the microcontroller. When the microcontroller
requests information, such as temperature or
pressure readings, the BMP280 transmits that
data back through the SDO pin. Essentially, it
acts as a communication line, allowing the
sensor to share its measurements with the
microcontroller for further processing in your
project.

The SDI pin (Serial Data In) on the BMP280
sensor is used to receive data from the
microcontroller in SPI (Serial Peripheral
Interface) mode. When the microcontroller
sends commands or configuration settings to
the BMP280, it does so through the SDI pin.
This pin allows the sensor to receive
instructions about what data to collect or how
to operate, enabling communication between
the sensor and the microcontroller.

The CS pin (Chip Select) on the BMP280 sensor is
used to manage communication in systems where
multiple devices share the same connection. When
the microcontroller wants to communicate with the
BMP280, it pulls the CS pin low to indicate that this
particular sensor is selected for data exchange. This
prevents confusion by ensuring that only the
chosen device responds to commands, while others
remain inactive. Essentially, the CS pin acts as a
switch, allowing the microcontroller to focus on
one device at a time for clear and organized
communication.

LED Backpack Counter

Adafruit LED Backpack Counter

The Adafruit LED Backpack Counter is a small, ready-
to-use display that shows numbers (and sometimes
letters) on its LED digits. It's perfect for projects
where you need to display things like scores, timers,
counters, or other numerical data.

LED Backpack Counter

Adafruit LED Backpack Counter
The D pin corresponds to the SDA line and is responsible for
carrying the actual data. This is where the microcontroller
sends instructions, like which digits or symbols to display and
which segments of the LEDs to light up. This line is bi-
directional, meaning that it not only allows the microcontroller
to send commands but also enables the LED Backpack to send
acknowledgments or other responses back if needed.

The C pin, on the other hand, corresponds to the SCL line,
which provides the clock signals necessary to synchronize the
data transfer. The clock ensures that the data on the D pin is
transmitted and received in a well-timed and organized
manner, preventing errors during communication.

The + and - pins on the Adafruit LED
Backpack are used to supply power to the
module. The + pin is the positive power
input, also referred to as VCC. It provides
the voltage needed to power the LED
display and its onboard controller chip.
The - pin, on the other hand, is the
ground connection, referred to as GND. It
serves as the return path for the electrical
current, completing the circuit. The - pin
must be connected to the ground pin of
the microcontroller or power source to
ensure proper operation.

GPS Module

Adafruit Ultimate GPS Breakout v.3

The Adafruit Ultimate GPS Breakout v3 is a compact GPS
module designed for accurate location tracking and navigation.
It integrates easily with microcontrollers and offers a variety of
features to enhance project functionality.
• Accurate GPS Data: Provides precise location information,

including latitude, longitude, and altitude.Speed and
Direction: Calculates speed and movement direction for
navigation purposes.

• NMEA Output: Outputs data in standard NMEA format for
easy integration with microcontrollers like Arduino or
Raspberry Pi.

• Timekeeping: Offers accurate time data based on GPS
signals, including UTC (Coordinated Universal Time).

• Battery Backup: Includes a battery backup option to
maintain real-time clock and satellite information, ensuring
faster GPS fixes after power loss.

GPS Module

Adafruit Ultimate GPS Breakout v.3 Pins

The 3.3V pin provides a regulated 3.3V output.
This pin can be used to power other
components or sensors in your project that
require a 3.3V power supply. It allows users to
draw power directly from the GPS module,
simplifying connections and reducing the need
for additional power sources.

The EN pin (Enable pin) is used to enable or
disable the GPS module's functionality. When the
EN pin is pulled high (connected to a voltage
source), the GPS module is activated and begins
receiving GPS signals. Conversely, pulling the EN
pin low (connecting it to ground) puts the
module into a low-power sleep mode, reducing
power consumption. This feature is particularly
useful in battery-powered projects, allowing
users to save energy when the GPS functionality
is not needed.

The VBAT pin is used to connect a battery for
backup power. This pin allows the GPS module to
maintain its real-time clock and satellite
information even when the main power is turned
off. By connecting a battery to the VBAT pin, the
module can quickly acquire GPS signals when
power is restored, reducing the time it takes to
get a location fix. This feature is particularly
useful in battery-operated projects where power
may be intermittent.

The FIX pin serves as an indicator of the GPS module's fix status. When
the pin is high, it signifies that the GPS has successfully acquired a valid
position fix and is receiving usable GPS data. If the pin is low, it means
the GPS is still searching for a signal or has not established a reliable fix.
Status Indicator: The FIX pin provides a simple way to monitor whether
the GPS module is functioning correctly and has a valid location.

GPS Module

Adafruit Ultimate GPS Breakout v.3 Pins

The TX pin (Transmit pin) is used to send data
from the GPS module to a microcontroller or
other devices. When the GPS module has
processed location data—such as latitude,
longitude, speed, and time—it transmits this
information through the TX pin in standard
NMEA format. This allows the microcontroller
to receive and interpret the GPS data for use
in various applications, such as navigation or
location tracking. We’ll review NMEA
formatted data elsewhere.

The RX pin (Receive pin) is used for receiving data from a microcontroller or other
devices. When the microcontroller sends commands or configuration settings to the GPS
module, it does so through the RX pin.

The PPS pin (Pulse Per Second pin) provides a
highly accurate timing signal that is synchronized
with GPS time.
*** The GPS module may require periodic
synchronization with GPS satellites to maintain
accurate time and position data, especially after
power loss or when it first acquires a signal.

Functions of the PPS Pin:
•Accurate Timing: The PPS pin emits a pulse at
the start of each second, corresponding precisely
to GPS time. This allows for extremely accurate
timekeeping, to within a few nanoseconds.
•Digital Output: The output is a digital signal,
typically transitioning from low to high at the
start of each second, making it easy to interface
with microcontrollers and other digital systems.

*** The VIN pin and the GND pin have the same functions as previously described for the BMP280 Sensor.

Software Overview – Arduino IDE

Module II

Arduino IDE

Arduino IDE (Integrated Development Environment)

1st Step: Plug in the USB Type B cable into the Arduino board and the computer.
This will allow you to communicate to the microcontroller from your computer
and vice-versa.

Now that we are familiar with the hardware we’ll be working with, let us introduce the software.

Arduino IDE

Arduino IDE (Integrated Development Environment)
2nd Step: Find the icon on your desktop to open up the Arduino IDE.

The code you write in the Arduino IDE is called a sketch, and the Arduino compiler handles all the
setup to convert it into machine language for the microcontroller. It utilizes a simplified subset of
C++ with a few custom libraries simplifying C++ to be more accessible for prototyping and
hardware interaction.

1. Navigate to the toolbar and select
Tools.

2. Go to Boards > Arduino AVR Boards

3. Select the model of the board you
are using. In this case, it is the
Arduino Mega or Mega 2560.

Check for proper board selection:

1. Navigate to the toolbar and select
Tools.

2. Go to Ports.

3. Select the COM port that shows the
model of your microcontroller
alongside it.

Check for proper port selection:

*** Occasionally, the security software installed on campus computers will flag the Arduino, blocking its
connection. If you have connection issues with the Arduino board, try closing the IDE, unplugging the board
and reconnecting it. Using the reset button on the Arduino board may also help.

Now that you have your board and port
properly selected in the application, let
us bring up our Serial Monitor within
the program. Two ways to bring it up
are circled here.

Opening the Serial Monitor:

1. Displays Output: It shows the data sent from the Arduino board to your computer,
allowing you to monitor sensor readings, status messages, and other output.

2. Send Input: You can send data from your computer to the Arduino by typing in the
input box and pressing Enter to send. This is useful for controlling your program or
changing parameters on the fly.

3. Baud Rate Configuration: You can set the baud rate, which determines how fast data is
transmitted between the Arduino and your computer. Both the Serial Monitor and the
Arduino need to be set to the same baud rate for proper communication.

What is the Serial Monitor:

BMP 280 Sensor Test:
Ambient Pressure, Temperature & Altitude

Module III

Let us experiment with this a little using the microcontroller and the BMP280 sensor.
Before we begin, make sure that you have the proper libraries installed so that the IDE
can understand the code we have scripted for you.

Start by clicking on the Library icon in the left hand column.

BMP 280 Sensor Test

It should open up the Library Manager where you can install and remove libraries of
code from the IDE. For our purposes, we need to find the library made for our
particular component, which is the Adafruit BMP 280 Temperature and Pressure
Sensor.

In the search bar, type in Adafruit BMP280.

BMP 280 Sensor Test

Install the library ensuring it matches the one shown here. If you only see an option to
remove it, then it’s already installed and you can skip this step.

***You should receive a prompt once you click Install. Make sure to select Install All
when asked.

BMP 280 Sensor Test

BMP 280 Sensor Test

Using the breadboard
1. Connect the BMP 280 Sensor to the breadboard.
2. To connect the BMP280 to the Arduino, the jumper wire must be placed into the breadboard slot next to the

sensor’s pin.
3. Once your jumper wires are connected to the BMP280, make the following connections to the Arduino:

Arduino BMP 280

(Power) 5V VIN

(Power) GND GND

(PWM) Pin 10 CS

(PWM) Pin 11 SDI

(PWM) Pin 12 SDO

(PWM) Pin 13 SCK

Connections

BMP 280 Sensor Test

Setup
Here is what your setup should look like!

Arduino BMP 280

(Power) 5V VIN

(Power) GND GND

(PWM) Pin 10 CS

(PWM) Pin 11 SDI

(PWM) Pin 12 SDO

(PWM) Pin 13 SCK

Connections

Now that our hardware is properly connected, let us return back to the IDE and open up a
prewritten code to test the sensor. Go to:
File > Examples > Adafruit BMP280 Library > BMP280 Test

**This will open up a new window containing prewritten code.

BMP 280 Sensor Test

By default, there is some code that is “commented out”. This is done by
beginning the line with a double forward slash (i.e. //), effectively disabling it.
For our purposes here, we will need to enable them.

Navigate to the text highlighted here.
Add // to the beginning of the first line, disabling it, and remove the // from
the third line to enable that one.

Leave the second line alone.

BMP 280 Sensor Test

Note that the baud rate selected in the serial monitor must match the baud rate
defined in the code, otherwise your results will be off.

So open up the serial monitor again, and make sure you have 9600 baud selected.
The baud rate in the sketch is defined by the code:

Serial.begin(9600);

BMP 280 Sensor Test

Reminder: You can use the button in the top right to pull up the serial monitor.

Now, let us run the code and test to see if component is reading properly.
Click on the check mark to compile the code, which also checks for errors.
Once cleared, hit the forward arrow to run the code.

BMP 280 Sensor Test

The code is read by the Arduino which communicates with the senseor, returning
the results as seen below in your serial monitor displaying the temperature,
pressure, and altitude of your location.

Once successful, move on to the next slide to begin our next component test.

***The most common issues arise from not having the correct COM port selected.
If you’re having trouble double check your port selection and if that’s fine, try
resetting the Arduino board by pressing the button near the USB port on the
microcontroller.

BMP 280 Sensor Test

BMP 280 Sensor Test

Identifying Data Transmission Speed
There are a few pieces of information you can gather from this test:
(a) temperature, pressure, and altitude of your location
(b) the length of time it takes to send a set of data (temperature, pressure, & altitude)
(c) how often it sends this data

1

2

3

To find (b) the length of time it takes to send a set of data, subtract the
timestamps of the first and last data points from the set. (1 from 2)

34.277 – 34.244 =.033 seconds to transmit a complete set of data (33 ms)

To find (c) how often it sends data, subtract the timestamps of the first items
from two consecutive sets of data. (1 from 3)

36.259 – 34.244 = 2.015 seconds between data transmission

LED Backpack Counter Test
w/ Arduino Generated Pulses

Module IV

To begin testing this component, we must make sure the proper libraries are installed,
just as we did for the sensor. Open up the library manager again, by clicking on the
icon in the panel to the left.

In the search bar, type in Adafruit LED Backpack Library.

LED Backpack Counter Test

Once clicking Install, you’ll be met with a prompt to install dependencies. Maker sure
to hit Install All for this one again.

***If you only see an option to remove the library, that means it’s already installed
and you can skip this step.

LED Backpack Counter Test

LED Backpack Counter

Testing the LED Backpack Counter
1. Now, let us connect the LED Backpack counter to the breadboard as you did with the sensor.
2. To connect the LED Backpack Counter to the Arduino, the jumper wire must be placed into the breadboard slot next

to the sensor’s pin.
3. Connect a jumper wire to each of the pins on the counter. Once your jumper wires are connected to the LED

Backpack Counter, make the following connections to the Arduino:

Arduino LED Counter

(Power) 5V +

(Power) GND -

(Comm) SDA D

(Comm) SCL C

Connections

*** In parentheses are the sections of the Arduino in which those pins are located.
*** The LED won’t light up until you run the code.

LED Backpack Counter

Setup
Here is what your setup should look like!

Connections

Arduino LED Counter

(Power) 5V +

(Power) GND -

(Comm) SDA Pin 20 D

(Comm) SCL Pin 21 C

*Keep in mind your LED won’t light up until
you run the code.

Testing the LED Backpack Counter
1. Click on the sketchbook icon in the left hand panel and
click on the New Sketch button at the bottom. This will
open up a new window for you to run code in.

Testing the LED Backpack Counter
1. Delete the default code that appears in the new

window.
2. Copy and paste following code in its place:

#include <Wire.h>
#include <TimerOne.h> // Timer1 documentation: https://www.pjrc.com/teensy/td_libs_TimerOne.html
#include <Adafruit_LEDBackpack.h> // Search Arduino Library manager for "Adafruit LED Backpack Library“ for 7-segment LED.
Adafruit_7segment matrix = Adafruit_7segment();
unsigned int timerCount = 0; // global variable needed to increment by one
void secondElapsed() {
timerCount++;
matrix.print(timerCount);

}
void setup() {
matrix.begin(0x70); // Creates a serial connection to 7-segment display with the address "0x70"
Timer1.initialize(1000000); // Initializes the timer to count every 1 000 000 microseconds i.e. one second
Timer1.attachInterrupt(secondElapsed); // Triggers interrupt every time timer counts

}
void loop() {
matrix.writeDisplay();

}

Testing the LED Backpack Counter
1. Once pasted in, click on the arrow in the header to run

the code.
2. As a result, the LED should light up and begin counting.
3. Once it’s successful, move on to the next slide and let

us begin on the next component.

***No output will be displayed in the serial monitor. We’re
only trying to make sure the LED Counter is working.

Arduino Timer Testing
w/ Arduino Generated Pulse

Module V

Key Concepts

Arduino Components
Let’s take a step back now and go over two components of the Arduino board and critical concepts that you’ll
need to grasp before moving on. Those are the:

16-Bit Timer16 MHz Crystal Oscillator

Key Concepts

***However, due to temperature fluctuations in the environment, aging effects of the crystal, and programming with
interrupts in the code, the Timer Tick Period will not match what we would expect as outlined above and so tests are
needed to determine the True Timer Tick Period, or at least a more accurate one.

16 MHz Frequency Crystal Oscillator

1 second
16,000,000 ticks

= 62.5 nanoseconds per tick

* This formula shows us how we arrive at the theoretical time it takes for the Arduino clock
to “tick” once. It doesn’t tick once a second like a normal clock, it would, theoretically, tick
once every 62.5 nanoseconds.

Theoretical Timer Tick Period

The ATmega2560 is operating with a 16MHz (megahertz) frequency clock oscillator, meaning the microcontroller can
perform up to 16 million operations per second, or 16 million clock cycles each second. A clock cycle, or “tick”, is the basic
unit of time for the microcontroller. The frequency of the oscillator determines the time period for each tick.

Key Concepts

The timer on board the ATMega 2560 is using a 16-bit counter which utilizes a binary number system The binary
number system is a method of representing numbers using only two symbols: 0 and 1. It is the foundation of all modern
computing systems because it aligns well with digital electronics, where circuits have two states: ON (1) and OFF (0).

Timers w/ Binary Systems

Binary Place 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Value 32,768 16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

Binary
Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A 16-bit counter with all bits set to 1 has a maximum value of 65,535. This is important because, with a 16-bit binary
system, the counter can only count up to this number. However, our clock oscillator operates at 16,000,000 ticks per
second, far exceeding the counter's capacity within a single cycle.

1111111111111111 = 65,535
Binary to Decimal

Key Concepts

The Arduino uses a binary number system but as a comparison, let’s look at how we use numbers using the decimal
number system. In the decimal number system, each digit in a number represents a different place value depending on
its position. Let's break down the number 9,432.

Decimal Numbering System

Place 103 102 101 100

Value 1,000 100 10 1

Digit 9 4 3 2

9,000 + 400 + 30 + 2 = 9,432

The rightmost digit (2) is in the ones place. This means it represents:
2 × 100 = 2 × 1 = 2
The next digit (3) is in the tens place. This means it represents:
3 × 101 = 3 × 10 = 30
The next digit (4) is in the hundreds place. This means it represents:
4 × 102 = 4 × 100 = 400
The leftmost digit (9) is in the thousands place. This means it represents:
9 × 103 = 9 × 1000 = 9,000

9,432

When we add up the values, we get the total for the number it represents:

Key Concepts

The binary system works much the same way as the decimal numbering system only that the values of the positions are
no longer powers of 10, but powers of 2. A limitation for the binary system is that it only can use two digits, 0 and 1 for
each position. This means that even though this number may look like 1,011 from the decimal system it is not equal in
value. Note also, binary numbers do not use comma separators.

Binary Numbering Systems

Place 23 22 21 20

Value 8 4 2 1

Digit 1 0 1 1

8 + 0 + 2 + 1 = 11

The rightmost digit (1) is in the ones place. This means it represents:
1 × 20 = 1 × 1 = 1
The next digit (1) is in the twos place. This means it represents:
1 × 21 = 1 × 2 = 2
The next digit (0) is in the fours place. This means it represents:
0 × 22 = 0 × 4 = 0
The leftmost digit (1) is in the eights place. This means it represents:
1 × 23 = 1 × 8 = 8

1011

When we add up the values, we get the total for the number it represents:

1011 = 11

Key Concepts

Working Around Limitations Using Code
To address the limitation of only being able to count up to 65,535, we wrote code to keep track of how many times the
counter reaches its maximum value of 65,535. When the counter hits this limit, it resets to 0 and starts counting again.
Each time this happens, we increment a variable in the code called "Overflows". For example, two overflows would
correspond to a total count of 65,536 × 2.

***Notice, we multiply the Overflows value by 65,536. This is because the timer treats the value 0 as a tick.

65,536 ticks

Overflows

0Timer 12

To watch the animation, click the
Animations Tab from the ribbon
above, and click Preview to see
how the timer affects the
Overflows variable.

Identifying True Arduino Timer Tick Period
Now we will be testing for the True Arduino Timer Tick Period. To do this, disconnect all of your previous jumper
wires, create a new sketch, and paste the code below.

volatile unsigned long overflowCount = 0; // Count the number of timer overflows
volatile unsigned long totalTicks = 0; // Total tick count

void setup() {
pinMode(13, OUTPUT); // Onboard LED pin for pulse generation
Serial.begin(115200); // Start serial communication

// Configure Timer1
noInterrupts(); // Disable interrupts for precise setup
TCCR1A = 0; // Clear Timer1 control registers
TCCR1B = 0;
TCNT1 = 0; // Reset Timer1 counter
TCCR1B |= (1 << CS10); // Set prescaler to 1 (no division)
TIMSK1 |= (1 << TOIE1); // Enable Timer1 overflow interrupt
interrupts(); // Enable interrupts
}

ISR(TIMER1_OVF_vect) {
// Increment overflow counter every time Timer1 overflows
overflowCount++;

}

void loop() {
// Generate a pulse
digitalWrite(13, HIGH);
delay(500); // Keep the pin HIGH for 500 ms
digitalWrite(13, LOW);
delay(500); // Keep the pin LOW for 500 ms

// Calculate total ticks
noInterrupts(); // Disable interrupts to safely read shared variables
totalTicks = overflowCount * 65536UL + TCNT1; // Total ticks = (overflows * 65536) + current counter value
overflowCount = 0; // Reset overflow count for the next second
TCNT1 = 0; // Reset Timer1 counter
interrupts(); // Re-enable interrupts

// Print the total ticks
Serial.println(totalTicks);

}

Identifying True Arduino Timer Tick Period
Run the code and you should see results appearing in your Serial monitor similar to mine. The numbers will be
different as it depends on your hardware and conditions mentioned before. Now that we know the code is working,
we need to extract the data for analysis.

In the next module, I will introduce the third party software that will help us do just that.

Setting Up Putty for Data Extraction

Module VI

Putty

Putty Settings

1st Step: Find the icon on your desktop to open
up the Putty application. If not on your desktop,
type Putty into your search bar to locate it in
your PC.

Putty is an application that captures information sent to your computer from the Arduino by tapping into the serial port.
With that said, you CANNOT have the serial monitor in the Arduino IDE open when running Putty as it will create a conflict
and not run.

2nd Step: In the Session menu, change the
connection type to serial.

Putty Settings
3rd Step: Make sure the Serial Line in Putty is set to the
same port and baud rate the Arduino is using to
communicate.

*To do this, navigate to Tools > Port, and identify which
COM line is being used. Remember, the speed set here
should match baud rate specified in the code you use
while using Putty.

Putty Settings
4th Step: Navigate to the Serial
menu item in the category tree and
configure your settings as such. The
Serial Line and Speed you set are
dependent on your Arduino IDE
configuration. The speed should
match the baud rate from the code
and the Serial Line should match
the port you are using. The rest of
the options should be identical to
mine.

Configuring Putty to Save Data
5th Step: Navigate to the Logging
menu item in the category tree and
configure your settings to match
that shown here.
- Select All session output
- Rename your file however you
like in the Log file name space
given.

Configuring Putty to Save Data
6th Step: You can set the destination for the file to be saved in by clicking browse and selecting
any location you’d like, a folder, the desktop, etc. I suggest creating a folder for your own
research and keeping your data organized as I did for myself here.

Running the Program
7th Step: Now that PuTTY is set up and ready to capture information from the IDE, the next step
would be to click Open to start the connection. However, we won't do that just yet. Before
PuTTY can receive data from the Arduino, you need to close the Serial Monitor in the Arduino
IDE. This is because both the Serial Monitor and PuTTY use the same communication ports,
which can create a conflict if both are open at the same time.

Running the Program
8th Step: You should see results come up in Putty as seen here. We will let the code
run for 1000 seconds which translates to 1000 datapoints (approx. 17 minutes) so we
can analyze a sizeable sample set.

Saving the Data
9th Step: Once done, close the Putty window. It will automatically save the logged
data wherever you set the file destination to in a previous slide.

Simple Data Analysis using Excel

Module VII

Testing Arduino Timer Against Signals
Generated by the GPS Breakout v.3 PPS Pin

Module VII

Ultimate GPS Breakout v.3

Testing the GPS Module
1. Now, let us connect the GPS module to the breadboard as you did with the LED backpack.
2. To connect the GPS module to the Arduino, the jumper wire must be placed into the breadboard slot next to the

sensor’s pin.
3. Connect jumper wires to make the following connections:

Arduino GPS Module

(Power) 5V VIN

(Power) GND GND

(PWM) 2 PPS

Connections

*** In parentheses are the sections of the Arduino in which those pins are located.

Ultimate GPS Breakout v.3

Setup
Here is what your setup should look like!

Connections
Arduino GPS Module

(Power) 5V VIN

(Power) GND GND

(PWM) 2 PPS

Ultimate GPS Breakout v.3

Testing the GPS Module
1. Once you connect the jumper wires to power the module, the FIX light will start blinking on and off. This indicates

that the module hasn’t acquired your location yet.
2. To resolve this, connect the GPS cables (hanging down over each workstation) to the port circled here.
3. After connecting, allow a few minutes for the module to establish your position. The process is complete when the

blinking slows down to about once every fifteen seconds.

Testing the GPS Module
1. Click on the sketchbook icon in the left hand panel and
click on the New Sketch button at the bottom. This will
open up a new window for you to run code in.

#define PPS_PIN 2 // The pin we're attaching to the PPS signal from the GPS unit
volatile unsigned int overflows = 0;
volatile unsigned int overflowsSincePPS = 0;
volatile unsigned int lastTimer1 = 0;
volatile bool recentPPS = false;
ISR(TIMER1_OVF_vect) // This is called whenever Timer/Counter 1 overflows
{
overflows++; // Increases the "overflows" variable by 1
}
void setup() {
Serial.begin(115200);
delay(1000);
pinMode(PPS_PIN, INPUT);
TCCR1A = 0; // Sets entire TCCR1A--Timer1 Control Register A--to 0
TCCR1B = bit(CS10); // Turns on the Timer1 clock and sets it to increment every clock cycle
TCCR1C = 0; // Timer 1 Control Register C set to 0
TCNT1 = 0; // Initialize timer/counter 1's value to 0
TIMSK1 = bit(TOIE1); // Timer/Counter1's interrupt mask register; TOIE1 is the timer/Counter1 overflow interrupt enable
Serial.println("Starting up...");
attachInterrupt(digitalPinToInterrupt(PPS_PIN), PPSHandler, RISING);
}
void PPSHandler() { // Since this is an interrupt we should do as little as possible here. Serial writes take a lot of clock cycles, so we save that for the loop.
lastTimer1 = TCNT1;
TCNT1 = 0; // Resets Timer1 Count
overflowsSincePPS = overflows;
overflows = 0;
recentPPS = true;
}
void loop(){
if (recentPPS) {
noInterrupts();
uint32_t overflowsTemp = overflowsSincePPS;
uint32_t lastTimerTemp = lastTimer1;
interrupts();
Serial.print("Overflow:");
Serial.println(overflowsTemp);
Serial.print("Timer1:");
Serial.println(lastTimerTemp);
Serial.print("ClockCycles:");
Serial.println(overflowsTemp << 16 | lastTimerTemp); // Equivalent to overflowsTemp * 2^16 + lastTimerTemp

recentPPS = false;
}
}

Testing the GPS Module
1. Delete the default code that appears in the new

window.
2. Copy and paste following code in its place:

Note that the baud rate is defined in the code with the line highlighted here.

The baud rate selected in the serial monitor must match the baud rate defined in
the code, otherwise your results will be off.

So open up the serial monitor again, and make sure you have 115200 baud
selected.

Testing the GPS Module

Reminder: You can use the button in the top right to pull up the serial monitor.

Run the code using the arrow in the top left of the IDE. Your results should appear
as it does below, listing the following every second:
1. Overflow Count
2. Timer 1 Count
3. Total Clock Cycles
4. The number to the left of the arrow in your results is a timestamp taken from

the computer.

***The GPS PPS pin is designed to emit a pulse once every second.

Testing the GPS Module

Reminder: You can use the button in the top right to pull up the serial monitor.

Key Concepts

Applying What We Learned
From the results displayed in the Serial Monitor, we can observe the time elapsed between each signal received from
the GPS PPS pin. This elapsed time is represented by two key values: the Overflow value and the Timer1 value. The
Overflow value reflects the number of complete timer overflows that have occurred, while the Timer1 value indicates
the leftover timer ticks that have not yet accumulated enough to increment the Overflow counter. Together, these
values provide a precise measurement of the time interval between signals.

Using my results, you can see that 244 Overflows plus 7420 individual ticks
occurred in between that signal and the last. Knowing these values, we
can calculate the elapsed time by doing the following:

(244 x 65,536) + 7420 = 15,998,204 ticks

You may have noticed that this number matches the ClockCycles value
from the same timestamp. In the code, we have programmed the Arduino
to perform the necessary calculation, allowing us to see the total number
of ticks between pulses from the PPS pin.

Arduino Timer Testing
w/ Pulse Generator

Module VII

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope
For this part we will be using the Pulse Generator and Oscilloscope in tandem with the Arduino board to test out some
more code.

Before we can do this, you need to make sure your equipment is set up properly.

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope
The first connection we’ll need to secure is the BNC cable to the Oscilloscope. Connect the BNC Cable from CH1
(Channel 1) on the Pulse Generator to Channel 1 on the Oscilloscope.

Pulse Generator Oscilloscope

Pulse Generator & Oscilloscope

Connecting the Pulse Generator & Oscilloscope
The other end of the BNC Cable should be equipped with an adaptor that has two slots for jumper wires so that you can
attach them to the Arduino board. The adaptor slots for the jumper wires are marked with a positive and negative sign.
Use this to make the connections in the table below.

BvNC Cable Arduino

+ 2 (PWM)

- GND (PWM)

*** In parentheses are the sections of the
Arduino in which those pins are located.

Connections

Oscilloscope Arduino Board

+ / - Markings

Pulse Generator & Oscilloscope

Setup
Here is what your setup should look like!

Connections
BNC Cable Arduino

+ 2 (PWM)

- GND (PWM)

Pulse Generator & Oscilloscope

Setting Up The Pulse Generator
Now lets adjust the settings on the Pulse Generator.

Turning on the pulse generator, the display will light up and you’ll see a screen similar to the one above. Ensure that the
Current Channel Sign is set to CH1. If set to CH2, press the CH1/CH2 button at the bottom of the panel to toggle
between the two.

Pulse Generator & Oscilloscope

Setting Up The Pulse Generator

Change the type of waveform generated to a pulse. Pulses are ideal for measuring how systems respond to quick,
temporary changes. You’ll notice the waveform image and state shown in the display will change as well.

Pulse Generator & Oscilloscope

Adjusting the Frequency
The frequency determines how many pulses per second the pulse generator emits. So at 500Hz, it’ll send out 500 pulses
per second.

Pressing the blue button under the Freq (Frequency) menu item will toggle the screen from Period to Frequency and
vice-versa. If it is already on Frequency, adjust the value to 500Hz by entering 500 using the number keypad outlined in
red above and finalizing your entry by selecting the appropriate scale from the new menu that appears underneath your
input. In our case, we want to choose Hz (hertz).

Examples of Varying Frequency

Pulse Generator & Oscilloscope

Adjusting the Period
The period is how long it takes for a pulse to complete one full cycle.

Toggle the menu into Period mode, by hitting the blue button underneath the Freq menu item and enter the desired
time. For our purposes, let us enter 2ms by entering 2 with the number keypad and finalize it by pressing the blue
button underneath the ms (milliseconds) menu item.

***I show you how to adjust the period so that you know how, but the period is automatically set once you enter the
frequency as the two measures are related. A 500Hz frequency waveform will always have a 2ms period.

Pulse Generator & Oscilloscope

Adjusting the Duty Cycle
The Duty Cycle refers to the percentage of the waveform that is in the ON (high voltage) state.

Press the button below DtyCyc (Duty Cycle) and it will
display its current setting. Enter 10 using the number
keypad and finalize your input by pressing the button
below the percentage sign in the newly displayed
menu.

Examples of Various Duty Cycles

*As seen on the oscilloscope.

**Note that pressing the DtyCyc button twice will toggle it between DtyCyc and Width. So, if you only see Width on
your screen, just press the button below the menu option to change it to DtyCyc.

Pulse Generator & Oscilloscope

Adjusting the High Level
The High Level refers to the amplitude (height) of the waveform.

Press the button below HiLev (High Level) and it will display its
current setting. Enter 5 using the number keypad and finalize your
input by pressing the button below the appropriate scale in the
newly displayed menu. For this exercise, select V (volts).

**Note that pressing the HiLev option twice will toggle it between Ampl and HiLev. So, if you only see Ampl on your
screen, just press the button below the menu option to change it to HiLev.

Breakdown of a Pulse Waveform
ON OFF

Pulse Generator & Oscilloscope

Adjusting the Low Level
The Low Level refers to the baseline or lowest voltage point of the waveform.

Press the button below LoLev (Low Level) and it will display its current setting. Enter 0 using the number keypad and
finalize your input by pressing the button below the appropriate scale in the newly displayed menu. For this exercise,
select V (volts).

**Note that pressing the LoLev option twice will toggle it between Offset and LoLev. So, if you only see Offset on your
screen, just press the button below the menu option to change it to LoLev.

Pulse Generator & Oscilloscope

Sending Out the Signal

Near the BNC cable connected to CH1, there is a button labeled Output. It must be lit up in order for its signal to be sent
out to the oscilloscope. If it is not lit up, press the button and you should see the waveform it is generating show up on
the display of your oscilloscope.

***If your screen looks different than the one shown here,
try cycling through the various view modes by pressing the
View button until it’s similar to mine.

Pulse Generator & Oscilloscope

Setting Up The Oscilloscope

Before we can verify the equipment reading, let us run through some settings to make sure the oscilloscope is doing
what we want it to. A good place to start is to adjust the position of all the cursors. The horizontal, vertical and trigger
level cursor. Adjust the knobs so that the arrows are set to 0 at all points which will align each one with the x or y axis.
***The vertical cursors position will appear on the screen as you turn the knob.

Horizontal Position

Trigger Level

Vertical Position Horizontal Position

Trigger Level

Pulse Generator & Oscilloscope

Setting Up The Oscilloscope

Press the Channel 1 button on your oscilloscope. This will display the Channel Menu on your screen as seen above.
Make sure your settings match what is circled on the screen here. If not, cycle through the options by pressing the
buttons alongside each menu item until it is identical.

Channel 1 Menu Button

Menu Cycle Buttons

Current Menu Displayed

Pulse Generator & Oscilloscope

Setting Up The Oscilloscope

Press the Channel 1 button on your oscilloscope. This will display the Channel Menu on your screen as seen above.
Make sure your settings match what is circled on the screen here. If not, cycle through the options by pressing the
buttons alongside each menu item until it is identical.

Trigger Menu
Button

Menu Cycle Buttons

Current Menu Displayed

Pulse Generator & Oscilloscope

Stabilizing the Signal

Most likely at this point, your signal is unstable, meaning its moving around the screen. To stabilize it, adjust the trigger
level to whatever value you need to so that the wave remains still. It should be some value in between your low and
high level, which in our case, is 0 and 5 volts respectively.

Trigger Level Knob

Trigger Level Value

Pulse Generator & Oscilloscope

Setting the Appropriate Scale

The knob highlighted in purple controls the voltage scale
(y-axis). Adjusting this knob changes how much voltage
each box in the grid represents. In this case, I have my
scale set to 5 volts, so each box represents 5 volts.

5V

500µs

The knob highlighted in yellow controls the time scale (x-
axis). Adjusting this knob changes how much time each
box in the grid represents. In this case, I have my scale set
to 500µs (microseconds), so each box represents 500µs.

Pulse Generator & Oscilloscope

Verify the Reading

5V

500µs

As you recall, we set our pulse generator to a period of 2ms (milliseconds) and a high level of 5 volts. Judging from the
signal seen on our oscilloscope, we can see that everything is in working order. The amplitude is one box high,
representing 5 volts, and the period, the length of time from the start of one pulse to the next, is 2000 microseconds
which is equal to 2 milliseconds.

500µs 500µs 500µs

One Period
(2ms)

#include <SPI.h> // Allows you to communicate with SPI (Serial Peripheral Interface) devices, with the Arduino as the master device
#include <Wire.h> // Enable this line if using Arduino Uno, Mega, etc.
// Signal pins are given a name, Global variables
#define triggerPin 2 // Trigger signal pin
// Interrupt service routine
// This function must be implemented, so that the TCNT1 counter counts
ISR(TIMER1_OVF_vect)
{
}
// All Arduino programs must contain a setup() and loop() functions
void setup() {
Serial.begin(115200); // Starts the serial monitor, sets baudrate to "115200" BPS
pinMode(triggerPin,INPUT); // Sets the digital pin 2 as an input
delay(1000); // Pauses the program for one second at the moment of open
// Initializes the Timer1 registers (16-bit timer -- counts from 0 to 65535 ad nauseam). Timer interrupts/pauses the execution of the loop() function for a predefined number of seconds.
// Timer1 is a 16-bit timer, so the timer will increase its value until it reaches its maximum count before reverting to 0. This enables the program to run a different set of commands. Once
executed, the program resumes at the same position.
TCCR1A = 0; // Sets entire TCCR1A--Timer1 Control Register A--to 0
TCCR1B = 0; // Timer 1 Control Register B set to 0 (The physical address of timer1)
TCCR1C = 0; // Timer 1 Control Register C set to 0
TCNT1 = 0; // Initialize timer/counter 1's value to 0
TIMSK1 = _BV(TOIE1); // Timer/Counter1's interrupt mask register; TOIE1 is the timer/Counter1 overflow interrupt enable
TCCR1B = 1; // Timer 1 Control Register B set to 1
attachInterrupt(digitalPinToInterrupt(triggerPin), Trigger, RISING); // Interrupts execution of the program when a trigger signal is received. The "Trigger" function is subsequently executed
}
void Trigger(){
unsigned int temp = TCNT1; // Only positive integers are required
Serial.print("TCNT1 value: ");
Serial.println(temp); // Prints the value stored at temp
}
void loop() {
// No lines are necessary here
}

Testing the accuracy of the Arduino Timer
1. Open up a new sketch, delete the default code that

appears in the new window.
2. Copy and paste following code in its place:
3. Note the baudrate here is 115200 as seen in the line of

code “Serial.begin(115200)”. Ensure the baud rate in
your IDE is set to the same value.

4. Run the code with the arrow icon in the top left.

Testing the accuracy of the Arduino Timer
1. The Serial Monitor should print out TCNT (Timer Count) values which

represent the number the counter reached the moment the pulse came in
from the pulse generator.

*** If your results are scrolling down continuously, you can stop the auto-
scrolling by clicking the double down arrow icon here.
*** If the auto-scrolling button is unresponsive, turn off the signal coming from
the pulse generator, by pressing the Output button near the CH1 cable.

Arduino Timers

Testing Arduino Timer Accuracy
Now that we have a better understanding of how the Arduino Timer works, let us use this knowledge to test its accuracy.

65,535 – 48,604 = 16,931 ticks before the timer count reset to 0

The last snippet of code I gave you logged the number the Arduino Timer reached as each pulse came in from the
Pulse Generator. Knowing that we set the Pulse Generator to 2ms pulses we would expect the counter to have 2ms
in between each printout as there are 2ms in between each pulse.

To test this, select any two consecutive readings. Keep in mind that your numbers will differ
from mine, but the results should be similar. I'll use the first two readings here.

The first pulse occurred at 48,604 ticks, and the next pulse came in at 15,065 ticks.

We know that the timer counts up to 65,535 before resetting to 0. To determine how many
ticks occurred between each pulse and calculate the elapsed time, subtract the first reading
from the maximum tick count, then add the second reading.

0 + 15,065 = 15,065 ticks after the timer count reset to 0

Arduino Timers

Testing Arduino Timer Accuracy
Recalling the calculation we did before to demonstrate the duration of each tick was 62.5 nanoseconds, we can now
determine the accuracy of our Arduino Timer. Again, it should be 2ms (equivalent to 2 million nanoseconds) as was
set on the Pulse Generator.

16,391
+ 15,065

31,996 = ticks in between each pulse

1 second
16,000,000 ticks

= 62.5 nanoseconds per tick

ticks before the timer count reset to 0
ticks after the timer count reset to 0

31,996 x 62.5 = 1,999,750 nanoseconds

* As you can see the reading is extremely close to perfect, off by only 250ns.

Arduino Timers

Testing Arduino Timer Accuracy
Keep in mind that if we had chosen a different set of consecutive readings, one where the counter didn’t reset, like
the readings circled below, you could simply subtract the smaller reading from the larger one and multiply the
difference by 62.5 to get your final result.

47,067 – 15,065 = 32,002 ticks in between each pulse

32,002 x 62.5 = 2,000,125 nanoseconds between each pulse

* Again the reading is extremely close to what we expected at 2ms.
* To convert nanoseconds to milliseconds you can divide the number by one million.

Flying Solo:
Perform this experiment twice more with the following settings for your pulse
generator and test the Arduino’s accuracy before moving on to the next slide:

- 3ms period
- 1ms period

Arduino Timers

Higher Frequencies / Shorter Periods

You may have noticed that your 1ms calculations may appear inaccurate, with the difference of the TCNT1 counts
exceeding expected values by over 50%.

The baud rate of your Arduino determines how fast data is transmitted (in bits per second) and must align with the
pulse signal frequency being measured. If the baud rate is too low, the Arduino may struggle to keep up with rapid
signal changes, resulting in data loss or inaccuracies.

With a 1 kHz signal (1ms period), increasing the baud rate to 230,400 can improve accuracy by ensuring the Arduino
processes data quickly enough to match the pulse frequency. Optimal results require matching the baud rate to your
signal's frequency and system needs. Experiment with different baud rates while considering factors like noise,
interference, and hardware quality.

Arduino Timers

Higher Frequencies / Shorter Periods
Test out a higher baud rate for the 1ms period and see if it brings you more accurate results.

Don’t forget to change the line of code responsible for setting the baud rate too! It should match the baud rate setting in the
IDE.

Baud Rates

Baud Rates
Knowing that a higher baud rate results in faster data transmission, you might be tempted to always set a high baud rate. This
does, however, come with drawbacks.

Increased Susceptibility to Noise: High baud rates make
communication more sensitive to electrical noise and
interference, which can lead to corrupted data. This is especially
problematic in environments with significant electromagnetic
interference (EMI).

Higher Error Rate Over Long Distances: If the Arduino is
communicating over a longer cable, higher baud rates are more
likely to encounter errors due to signal degradation.

Baud Rates

Baud Rates
Knowing that a higher baud rate results in faster data transmission, you might be tempted to always set a high baud rate. This
does, however, come with drawbacks.

Excessive CPU Overhead: A high baud rate increases the
frequency at which the Arduino's processor handles serial
interrupts, leaving less processing power for other tasks and
potentially slowing down the system.

Waste of Resources: For longer signal periods or slower signals,
a high baud rate is unnecessary and inefficient. It forces the
system to process more data than required, which can be
wasteful in terms of energy and processing time.

When writing code for the Arduino, it’s important to experiment with various baud rates to determine the one that
delivers the most accurate readings.

Retrieving NMEA Data
from the GPS Breakout v.3

Module IX

Retrieving NMEA Data

Setup
Here is what your setup should look like!
Make the following connections:

Connections

Arduino GPS

(Power) GND GND

(Power) 5V VIN

(Comm) TX1 RX

(Comm) RX1 TX

Retrieving NMEA Data
1. Open up a new sketch, delete the default code make

sure your baud rate is set to 9600.
2. Paste the code given below.
3. Run the code

void setup() {
Serial.begin(9600); // Sets the baud rate for the Serial Monitor
Serial1.begin(9600); // Sets the baud rate for the GPS communication on Serial1

}

void loop() {
if (Serial1.available()) {
char c = Serial1.read(); // Takes the value from Serial1.Read and assigns it to variable 'c’
Serial.print(c); // Prints variable 'c' to the Serial Monitor
}

}

Retrieving NMEA Data
Results should appear as seen below.

Understanding NMEA Data

Sentence Types Output by Adafruit GPS Breakout v.3

Sentence Type Data Type

GGA Global Positioning System Fixed Data

GSA GNSS DOP and Active Satellites

GSV GNSS Satellites in View

RMC Recommended Minimum Specific GNSS Data

VTG Course Over Ground and Ground Speed

*GNSS stands for Global Navigation Satellite System.

As you may have noticed in your results, there are the five sentence types that the Adafruit Ultimate GPS
Breakout v.3 is capable of transmitting.

Understanding NMEA Data
GPGGA (GGA Sentence Type)
GPGGA Sentence Types follow
this sequence and format,
printed in order from left to
right, and separated by
commas.

Data Example Unit Description

Message ID $GPGGA GGA Protocol Header

UTC Time 080754.000 hhmmss.sss

Latitude 3342.6618 ddmm.mmmm

N/S Indicator N N = North, S = South

Longitude 11751.3858 dddmm.mmmm

E/W Indicator W E = East, W = West

Position Fix Indicator 1 Range 0 – 6, * See Position Fix Indicator Table (next slide)*

Satellites Used 10 Range 0 - 12

HDOP 1.2 Horizontal Dilution of Precision

MSL Altitude 27.0 Meters

Units M Meters

Geoid Separation -34.2 Meters Geoid-to-ellipsoid separation. Ellipsoid altitude = MSL
Altitude + Geoid Separation

Units M Meters Null fields when DGPS is not used

Age of Diff. Corr. Seconds

Diff. Ref. Station ID 0000

Checksum *5E

Understanding NMEA Data

GPGGA (GGA Sentence Type)
These are the values and meanings for the Position Fix indicator used in the GPGGA Sentence Type

Value Description

0 Fix Not Available

1 GPS SPS Mode, Fix Valid

2 Differential GPS (DGPS), SPS Mode, Fix Valid

3 - 5 Not Supported

6 Dead Reckoning Mode, Fix Valid

Position Fix Indicator

Understanding NMEA Data

GPGGA (GGA Sentence Type Example)
Here is an example of a GGA sentence type from the previous output

$GPGGA, 224304.000, 4045.4040, N, 07345.4025, W, 2, 08, 1.17, 58.1, M, -34.3, M, 0000, 0000*67

Message ID

Timestamp
(10:43:04.000)

Latitude

Longitude

Position Fix
Indicator

Satellites
Used

HDOP

MSL
Altitude

Geoid
Separation

Unit Unit

Age of
Diff. Corr.

Diff. Ref.
Station ID

Checksum

Sentence Breakdown

Understanding NMEA Data

GPGSA (GSA Sentence Type)
GPGSA Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

Data Example Unit Description

Message ID $GPGSA GSA Protocol Header

Mode 1 A A or M, *See Mode 1 table*

Mode 2 3 Range 1 – 3, *See Mode 2 table*

Satellite Used 07 SV on Channel 1

Satellite Used 02 SV on Channel 2

…

Satellite Used SV on Channel 12

PDOP 1.8 Position Dilution of Precision

HDOP 1.0 Horizontal Dilution of Precision

VDOP 1.5 Vertical Dilution of Precision

Checksum *33

Understanding NMEA Data

GPGSA (GSA Sentence Type)
These are the values and meanings for the Mode 1 and Mode 2 entries from the previous table.

Data Description

M Manual – forced to operate in 2D or 3D mode

A 2D Automatic – allowed to automatically switch 2D/3D

Data Description

1 Fix not available

2 2D (<4 SVs used)

3 3D (<3 SVs used

Mode 1

Mode 2

Understanding NMEA Data

GPGSA (GSA Sentence Type Example)
Here is an example of a GSA sentence type from the previous output

$GPGSA, A, 3, 14, 22, 30, 08, 07, 27, 13, 17,,,,, 1.88, 1.17, 1.47*0E

Message ID

Mode 1

Mode 2 PDOP

Satellites Used

VDOP

HDOP Checksum

Sentence Breakdown

Understanding NMEA Data
GPGSV (GSV Sentence Type)
GPGSV Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

Data Example Unit Description

Message ID $GPGSV GSV Protocol Header

Number of Messages 2 Range 1-3

Message Number 1 Range 1-3

Satellites in View 08

Satellite ID 07 Channel 1 (Range 1-32)

Elevation 79 Degrees Channel 1 (Max. 90)

Azimuth 048 Degrees Channel 1 (True, Range 0 – 359)

SNR (C/N0) 42 dBHz Range 0 – 99, null when not tracking

….

Satellite ID 27 Channel 3 (Range 1-32)

Elevation 21 Degrees Channel 3 (Max. 90)

Azimuth 138 Degrees Channel 3 (True, Range 0 – 359)

SNR (C/N0) 35 dBHz Range 0 – 99, null when not tracking

Checksum

Note the ellipsis in the left
most column indicates that
the information repeats until
all Satellite ID’s and
associated information are
given.

Understanding NMEA Data

GPGSV (GSV Sentence Type Example)
Here is an example of a GSV sentence type from the previous output

$GPGSV, 3, 1, 12, 07, 65, 195, 25, 30, 60, 284, 37, 21, 56, 105, 16, 02, 53, 142, 17*7F
Message ID

of
Messages

Message # Satellite ID

Satellites in
View

Azimuth

Elevation

Checksum

Sentence Breakdown

SNR
(C/N0)

Satellite ID Azimuth

Elevation SNR
(C/N0)

Satellite ID Azimuth

Elevation SNR
(C/N0)

Satellite ID Azimuth

Elevation SNR
(C/N0)

Understanding NMEA Data
GPRMC (RMC Sentence Type)
GPRMC Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

Data Example Unit Description

Message ID $GPRMC RMC Protocol Header

UTC Time 161229.487 hhmmss.sss

Status A A = Data Valid, V = Data not Valid

Latitude 3723.2475 ddmm.mmmm

N/S Indicator N N = North, S = South

Longitude 12158.3416 dddmm.mmmm

E/W Indicator W E = East, W = West

Speed Over Ground .13 Knots

Course Over Ground 309.62 Degrees

Date 120598 ddmmyy

Magnetic Variation Degrees E = East, W = West

E/W Indicator E E = East

Mode A A = Autonomous, D = DGPS, E = DR

Checksum *10

Understanding NMEA Data

GPRMC (RMC Sentence Type Example)
Here is an example of a RMC sentence type from the previous output

$GPRMC, 224304.000, A, 4045.4040, N, 07345.4025, W, 0.08, 317.75, 041224,,,D*77
Message ID

UTC Time

Status Checksum

Sentence Breakdown

Speed Over
Ground

Longitude
Course Over

Ground

Latitude Date Mode

Understanding NMEA Data
GPVTG (VTG Sentence Type)
GPVTG Sentence Types follow this sequence and format, printed in order from left to right, and separated by commas.

Data Example Unit Description

Message ID $GPVTG RMC Protocol Header

Course 309.62 degrees Measured Heading

Reference T True

Course degrees Measured heading

Reference M Magnetic

Speed 0.13 knots Measured horizontal speed

Units N Knots

Speed 0.2 km/hr Measured horizontal speed

Units K Kilometers per hour

Mode A A = Autonomous, D = DGPS, E = DR

Checksum *23

Understanding NMEA Data

GPVTG (VTG Sentence Type Example)
Here is an example of a RMC sentence type from the previous output

$GPVTG, 317.75, T, , M, 0.08, N, 0.15, K, D*77
Message ID

Course

Reference

Checksum

Sentence Breakdown

Units

Speed Speed

Reference Units

Mode

Arduino Timers

Identifying True Arduino Timer Tick Period
Now we will be testing for the True Arduino Timer Tick Period.

To do this, disconnect all of your previous jumper wires and reconfigure it accordingly:

Connections

Arduino Breadboard Breadboard

(Power) GND Negative Rail

(PWM) 11 A10

(PWM) 2 B10

E10 (Resistor) F10 (Resistor)

J10 Negative Rail

* Note for the E10 and F10 pins on the breadboard, you must
connect them using a resistor, not a jumper wire.

Negative Rails

Breadboard
Pin Assignments

Pulse Generator & Oscilloscope

Setup
Here is what your setup should look like!

Connections
Arduino Breadboard Breadboard

(Power) GND Negative Rail

(PWM) 11 A10

(PWM) 2 B10

E10 (Resistor) F10 (Resistor)

J10 Negative Rail

#include <TimerOne.h>
//This line includes the TimerOne library, which provides functions for configuring and controlling
//Timer1 on Arduino boards. This is commonly used for precise timing tasks like generating PWM signals
//or periodic interrupts.
void setup() {
Serial.begin(9600);
//Initializes serial communication with a baud rate of 9600 bits per second, allowing the Arduino
//to send data to and receive data from a computer.
pinMode(11,OUTPUT);
//Configures pin 11 as an output. This pin is used to output a PWM signal generated by Timer1.
pinMode(2,INPUT);
//Configures pin 2 as an input. This pin is used to read a digital signal.
Timer1.initialize(1000000);
//Initializes Timer1 with a period of 1,000,000 microseconds (1 second).
//This sets the base timing for the timer.
Timer1.pwm(11,100000);
//Configures Timer1 to generate a PWM signal on pin 11. The duty cycle of the PWM signal is determined
//by the second parameter (100000).The duty cycle is calculated as (100000 / 1000000) * 100 = 10%.
//This means pin 11 will be ON for 10% of the timer's period and OFF for the remaining 90%.
}
void loop() {
//The loop() function runs continuously after setup().
while(digitalRead(2) == HIGH) {
Serial.println(HIGH);

//This loop continuously reads the digital state of pin 2. If the signal is HIGH (logic 1, e.g.,
//button pressed), it prints 1 (the value of HIGH) to the serial monitor repeatedly until the signal changes.
}
while(digitalRead(2) == LOW) {
Serial.println(LOW);

//This loop behaves similarly but checks for a LOW signal (logic 0, e.g., button not pressed).
//It prints 0 (the value of LOW) to the serial monitor repeatedly until the signal changes.
}
}

Testing the accuracy of the Arduino Timer
1. Open up a new sketch, delete the

default code that appears in the new
window.

2. Copy and paste following code in its
place:

3. Note the baudrate here is 9600 as
seen in the line of code
“Serial.begin(9600)”. Ensure the baud
rate in your IDE is set to the same
value.

4. Run the code with the arrow icon in
the top left.

* I recommend reading the comments left
in the code to understand the instructions
being sent to the Arduino.

Testing the accuracy of the Arduino Counter
1. The Serial Monitor should print out 0 for as long as signal

reads LOW and 1 for as long as the signal reads HIGH.

Arduino Timers

Further Testing of Arduino Timer Accuracy
As the comments in the code described, we set Timer1 to send a pulse once every second that has a pulse width of
10%. So our expected results are that the pulses come in every second, and remain in the ON (HIGH) state for a
tenth of a second (100 milliseconds).

To find this out, we must log three timestamps as outlined below:

1. The timestamp when it changes
from 0 to 1.

2. The timestamp of the very next
instance it changes back from 1 to
0.

3. The timestamp of the very next
instance it changes back from 0 to
1.

*With this data we can calculate how
accurate the Arduino is.To help visualize the information that we are taking, I’ve included this chart

above.

1

2

3

Arduino Timers

Further Testing of Arduino Timer Accuracy

1. The difference between points 1
and 2 will give us the time the
signal remained in the ON (HIGH)
state.

2. The difference between points 1
and 3 will give us the time that
passes in between pulses.

1

2

3

1 2 3

These were the timestamps that I
collected. Obviously, your numbers
will be different but the math remains
the same.
As the time stamps are all from within
the same minute, we can drop that
when doing our calculations.

Arduino Timers

Further Testing of Arduino Timer Accuracy

Find the pulse width (subtract timestamp 1 from timestamp 2)
52.076 – 51.978 = .098 seconds (98 milliseconds)

Find the pulse period (subtract timestamp 1 from timestamp 3)
52.993 – 51.978 = 1.015 seconds

No. Timestamp

1 51.978

2 52.076

3 52.993

2 31
Remember, we were expecting a pulse
period of 1 second and a pulse width
of a tenth of a second (100
milliseconds).
The results are close to what was
expected but now we want to quantify
the deviation observed here.

Integrating Putty in Timer Testing
To quantify the deviation, we need more than one datapoint. We need a sample set of datapoints that we can use to
determine the average deviation across. To do this, we use Putty to extract the information and from there we
export it to Excel.

Step 1: Close the Serial Monitor in the Arduino IDE. Step 2: Click Open in the Putty window.

