

Supported by NSF, AFOSR, European Commission

Many Mysteries Remain About Friction's Origins Friction determined by processes on wide range of scales •Friction comes from interactions between atoms in repulsive contact < nm → sensitive to exact chemistry, atomic geometry, ... that is often unknown •Surfaces rough on nm to mm scales Area and geometry of contacting regions determined by roughness and long-range elastic and plastic deformation. •Adhesion typically ignored in determining contact & friction No general theory for behavior far from equilibrium Equilibrium ⇒ stable state minimizes free energy Far from equilibrium ⇒ must solve dynamical equations Computer simulations allow controlled "experiments" Explore trends, discover unanticipated mechanisms

Conclusions

- Have analytic understanding of relation between contact area and load: p_{rep}=N/A=E'/κ_{rep}h' *⊂please measure*
- Parameter-free theory for onset of adhesion Adhesion rare, typical w/E'=l_a << atomic spacing
- Parameter-free theory for sphere on flat contact
- Proportionality between area and load is not enough to explain Amontons' laws even in nonadhesive case
 → Is h' a material parameter?
 - \rightarrow Clean surfaces friction exponentially weak
 - \rightarrow Plowing, wear, ... geometry changes τ
 - \rightarrow Welding may give constant τ for polymers?
- Third bodies give $\tau_s = \tau_0 + \alpha p$, material property of body $\alpha \Longrightarrow \mu$ independent of uncontrolled exp. parameters gives rate state behavior with right energy scale