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Made up of neutrlnos

NEUtrII‘IOS are the Ul’IIVEI‘SES most common masswe partlcle

The Particle Universe oy

102

102

10°

(Billions of iy
neutrinos go . N
through your | |

thumb every
second)

LEPTONS
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- protons electrons
’I- neutrons

dark matter
Y

How come we don't notice them?
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The Standard Model “Misfits”
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Neutrinos have
Mev  EXTREMELY
small masses
keV

; ~10° times
v lighter than the
electron

; meV

- Symmetry Magazine 2013

Neutrinos only
Interact (talk to
the rest of the
universe) via
the weak
huclear force



Neutrinos only interact via the weak nuclear force
(They carry no charge)




Neutrinos only interact via the weak nuclear force
(They carry no charge)
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Neutrinos only interact via the weak nuclear force
(They carry no charge)
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Neutrinos only interact via the weak nuclear force
(They carry no charge)

The type of particle
that comes out tells
you information
uon) about the type of
neutrino that

Charged |nteracted
L Current
' Interaction
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Neutrinos only interact via the weak nuclear force
(They carry no charge)

(muon)

Charged
,,<+— Current  Other types of

Interaction  harticles can also
come out from this
type of interaction
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Neutrinos only interact via the weak nuclear force
(They carry no charge)

(electron) / (tau)

“Nothing” in....something out!
(One of those somethings is a lepton)



Neutral Current Interactions

“...sometimes, the neutrino opts to
play ding-dong-ditch instead,
depositing a fraction of its energy in
the detector before speeding away.
This Is called a neutral current
event, and, in many cases, it is the
bane of the modern neutrino
physicist’s existence....”

- Symmetry Magazine, May 06th 2014

Interaction

“Nothing” in....something out!
@ @ (Those somethings is NOT a lepton)




Neutrino Oscillation Physics
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*  Neutrino
Flavor
States

Turns out that we observe neutrinos changing
(oscillating) their type (flavor)

. s .
This means | can [ et it travel some And it will have
start with one type of distance changed its type
neutrino
Neutrino
Mass

States




P(v,=v,)=sin*(20)sin’

This oscillation between different flavors can be
understood as a mixing which looks like a sine wave

Mother nature gives us Am and 6

We use the length the neutrino has traveled
(L), and the energy of the neutrino (E) to probe
and understand the nature of the oscillation



What this means for an experimentalist is if | have a

source of neutrinos | can study their oscillation behavior

For very short distances For longer distances
e' -
v v v w
e e— -
source detector source detector
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source source

detector detector



Unanswered “Misfit” Questions
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~ Puzzles in universe addressed with v's




 Puzzles in universe addressed with v's

 Where is all the anti-matter?




~ Puzzles in universe addressed with v's
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Neutrino oscillation could allow a preferential
transition of matter to dominate in our early
universe of anti-matter




Puzzles In universe addressed with v's

Is this picture complete?
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Puzzles In universe addressed with v's
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There is an ever growing body of work that
suggests the possibility of more neutrinos
than the three we know about in the

Standard Model



The Short-Baseline Neutrino Program
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The story of the Short-Baseline Neutrino
Program can best be understood through the
history of the physics that we've been following



Booster Neutrino Beam
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Neutrino Oscillation

 Booster Neutrino Beam (BNB) has been
operating for a decade!

- Avery well understood and characterized beam
- Low (< 0.5%) contamination from intrinsic v,

* Neutrino beam created from 8 GeV protons
colliding on a beryllium target and having sign
selected pions focused by a magnetic horn
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MiniBooNE Experiment
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An accelerator based oscillation experiments
sees an excess of v_events appearing

Look for the
appearance of the other
type of electron
neutrinos

Let them travel some
distance so some
oscillate

Use your accelerator to
produce a beam of
muon neutrinos




An accelerator based oscillation experiments
sees an excess of v_events appearing
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What If there are more types of'v's

V” 4 . Ve
If | start with muon There are 3+n ways ; And tfliqis will
type neutrinos it can oscillate enhance the amount

of electron neutrinos
| observe later
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A 3+1 Model |

This would
Imply there are m v,
new particles Amrac 1V @ v,

(‘sterile’ neutrinos — neutrinos m v
that don't participate via the
weak force) O v,




MlcroBooNE addressmg MiniBooNE
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What you would like IS anjexperiment that
as MiniBooNE; at (nearly) the
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slectron/photon separation :i¢j]i:




he beginning of the SBN Program

MiniBooNE Detector

Al SON HALL
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MicroBooNE is the first
LArTPC detector on the

the SBN program
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LAFTPC'S
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Neutrino interaction in LAr produces Drift the ionization charge in a Read out charge and light produced
ionization and scintillation light uniform electric field using precision wires and PMT's

0 50 100 150 200
2000

1500

1000

LArTPC's offer
Incredible fine grain
tracking along with

electron/photon
separation

Drift coordinate
(time ticks)

500

n
2000

1500

1000

500

Drift coordinate
(time ticks)

32

0 50 100 150 200

Wire Number



 MicroBooNE will utilize the
electron | photon discrimination
power of LArTPC's to determine if
the MiniBOoONE excess is electron
like (from v, appearance) or photon

like (unaccounted for background)
ArgoNeuT Data

MlcroBooNE

ArgoNeuT Data
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N Z —— gammas
oo — secsrio By analyzing the topology and
05 the dE/dX of the
N3 electromagnetic shower,
o + Topology cut disentangling the MiniBooNE
3 + b g, netieldedin low energy excess hecomes
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0: 2 4 dlhé 8 10 12 pOSSible

average dE/dx



MlcroBooNE
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* MicroBooNE has been =~ -
successfully recording
neutrino interactions
since late 2015
- Presented first results at
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* Oscillation Physics

— Utilize its ely separation to determine if the signal is photon-like or

electron like

 Regardless of if it is electron or photon like there Is

Interesting physics to uncover!

- If it is electron-like than this is a compelling clue towards an oscillation signature

- If it is photon like than there is a process that we are not including in our models

~ MicroBooNE, 1.32e+21 POT (470m) ERp Ve
1400 signal: ( Am? = 0.43 eV % sin? 20, =0.013) BRK —v,

o
Statistical Uncertainty Only — ﬁc ; ""j
— = ingle y

—v,CC
== Dirt

B= Cosmics
— Signal

Events / GeV
T T 1 | T |m| [
L’J!J;;r

600

400

200 F

0.5 1 1.5 2 2.5 3
Reconstructed Energy (GeV)

 MicroBooNE is the largest
LArTPC ever built in the
U.S.

- 89 Tons of active mass

about this big

 MicroBooNE also has a
rich physics program
planned



The Short-Baseline Neutrino Program

SBN NEAR
EEEEEEEE

DETECTOR

A
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What do | need to add to the existing program (top notch
neutrino beam + world class neutrino detectors) to make

a definitive search eV scale for sterile neutrinos?

— Normalization of the un-oscillated neutrino beam (Near detector)

— High statistics in the appearance channel (large mass far detector)
— Look for complimentary muon disappearance (near/far comparisoii)



The Short-Baseline Neutrino Program
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The Short-Baseline Near
Detector (SBND) will be a
112 ton LArTPC located 110

meters from the target
* Characterize the beam before
oscillation

« Cancel many dominant
systematic




Short Baseline Near:

Detector (SBND)

Process No. =
Events ® SBND WIII COIIECt
v, Bvents (By Final State Topology) - - -
CC Inchusive ue0  MIlIONS Of neutrino
CCOm vuN = p+Np 3.551.830 - -
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NCOm v, N — nucleons 1.371.070
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4000
the electron neutrino o
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Short Baseline Near Detector (SBND)

 Major components of the
SBND detector are
currently being fabricated
in both the US and UK

- Wire frames being made by

Wire plane prototyping at
University of Chicago

! ST 9 ;.‘mﬂ'l""‘! |
W SN g

both US and UK collaborators = e P

— Civil construction of the
building proceeding on
schedule

* Expect to start detector
assembly and installation
in late 2017/ early 2018

Detector building at Fermilab as of

July 2016




The Short-Baseline Neutrino Program

SBND
ﬂmgﬁ;ﬁﬁﬁv N||:1_t

]‘11 / The ICARUS detector is
il - the largest LArTPC

ever built

I b —— =N | * Adding the large mass
ICARUS TPC allows for precision

oscillation search 40




ICARUS 1600

IHEA BANI]G[IFEHAN SASSU Gran Sasso
;”r; =« [CARUS was the first
g large scale LArTPC to run
come | | o SN in a neutrino beam line
Raz ==t - Ran in the CNGS beam from

CERN to Gran Sasso
Labrotory from 2010 — 2013

» After completing a
successful neutrino run
demonstrating the power
of the LArTPC technology
In an underground
laboratory the detector
has been moved from

= Gran Sasso to CERN

ICARUS Detector @ Gran Sasso 4l




ICARUS 1600

Events / GeV

=
3

« The ICARUS detector is at CERN
for refurbishment before it is
shipped to Fermilab

- The detector is expected to be finished
In 2016 and move to FNAL in 2017

* This large mass detector will
provide increased sensitivity to
the electron neutrino appearance
search
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Reconstructed Energy (GeV)



The SBNI Program

a5 Utilizing three similar A —
= NC Single - . ode
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Am’;’l=1.10 eV

ICARUS T600 (600m)
P.O.T.=6.6< 107

MicroBooNE (470m)

P.O.T.=1.3% 10*

Ami =110V
. cli(20/= 0m0) =

— Unoscillated

[T T

2 25

Smeared Neutrino Energy [GeV]

= u . Ratio of

SBND (100m)
P.O.T. = 6.6< 10?°

VM V Amg=110eV

- -Msﬂze": Ol mm
av — Unoscillated V
u w A Oscillated u

Osc. to Unosc.

2 25

Smeared Neutrino Energy [GeV]

* The three detector configuration also allows you to
search for the muon neutrino disappearance channel
as well

- Complimentary to the electron neutrino appearance search

0.5 1 15 2 25 3
Smeared Neutrino Energy [GeV]
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. Conclusiofs’
 Fermilab stands at the dawn of the next
generation of precision neutrino experiments

 The MicroBooNE experiment is taking neutrino™
data now!

I - This turns the key on the launch of the short-baseline
experiment at Fermilab

- » Ground breaking on the buildings for the near
~and far detector will occur this summer

- Planning and design work on the near detector is
moving ahead at full speed

— The refurbishment of the ICARUS detector Is ongomg
at CERN and is expected to be complete In 2016 "
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